Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 14 de 14
Filtrar
1.
Microb Cell ; 6(1): 65-101, 2019 Jan 07.
Artigo em Inglês | MEDLINE | ID: mdl-30652106

RESUMO

Genomes are constantly in flux, undergoing changes due to recombination, repair and mutagenesis. In vivo, many of such changes are studies using reporters for specific types of changes, or through cytological studies that detect changes at the single-cell level. Single molecule assays, which are reviewed here, can detect transient intermediates and dynamics of events. Biochemical assays allow detailed investigation of the DNA and protein activities of each step in a repair, recombination or mutagenesis event. Each type of assay is a powerful tool but each comes with its particular advantages and limitations. Here the most commonly used assays are reviewed, discussed, and presented as the guidelines for future studies.

2.
Elife ; 42015 Dec 11.
Artigo em Inglês | MEDLINE | ID: mdl-26653140

RESUMO

SUMO-modification of nuclear proteins has profound effects on gene expression. However, non-toxic chemical tools that modulate sumoylation in cells are lacking. Here, to identify small molecule sumoylation inhibitors we developed a cell-based screen that focused on the well-sumoylated substrate, human Liver Receptor Homolog-1 (hLRH-1, NR5A2). Our primary gene-expression screen assayed two SUMO-sensitive transcripts, APOC3 and MUC1, that are upregulated by SUMO-less hLRH-1 or by siUBC9 knockdown, respectively. A polyphenol, tannic acid (TA) emerged as a potent sumoylation inhibitor in vitro (IC50 = 12.8 µM) and in cells. TA also increased hLRH-1 occupancy on SUMO-sensitive transcripts. Most significantly, when tested in humanized mouse primary hepatocytes, TA inhibits hLRH-1 sumoylation and induces SUMO-sensitive genes, thereby recapitulating the effects of expressing SUMO-less hLRH-1 in mouse liver. Our findings underscore the benefits of phenotypic screening for targeting post-translational modifications, and illustrate the potential utility of TA for probing the cellular consequences of sumoylation.


Assuntos
Inibidores Enzimáticos/isolamento & purificação , Inibidores Enzimáticos/metabolismo , Hepatócitos/efeitos dos fármacos , Receptores Citoplasmáticos e Nucleares/metabolismo , Sumoilação/efeitos dos fármacos , Taninos/isolamento & purificação , Taninos/metabolismo , Animais , Células Cultivadas , Avaliação Pré-Clínica de Medicamentos/métodos , Perfilação da Expressão Gênica , Hepatócitos/enzimologia , Humanos , Concentração Inibidora 50 , Camundongos , Camundongos SCID
3.
Comb Chem High Throughput Screen ; 17(4): 333-42, 2014 May.
Artigo em Inglês | MEDLINE | ID: mdl-24661212

RESUMO

The Small Molecule Discovery Center (SMDC) at the University of California, San Francisco, works collaboratively with the scientific community to solve challenging problems in chemical biology and drug discovery. The SMDC includes a high throughput screening facility, medicinal chemistry, and research labs focused on fundamental problems in biochemistry and targeted drug delivery. Here, we outline our HTS program and provide examples of chemical tools developed through SMDC collaborations. We have an active research program in developing quantitative cell-based screens for primary cells and whole organisms; here, we describe whole-organism screens to find drugs against parasites that cause neglected tropical diseases. We are also very interested in target-based approaches for so-called "undruggable", protein classes and fragment-based lead discovery. This expertise has led to several pharmaceutical collaborations; additionally, the SMDC works with start-up companies to enable their early-stage research. The SMDC, located in the biotech-focused Mission Bay neighborhood in San Francisco, is a hub for innovative small-molecule discovery research at UCSF.


Assuntos
Antiparasitários/farmacologia , Descoberta de Drogas/organização & administração , Ensaios de Triagem em Larga Escala/métodos , Bibliotecas de Moléculas Pequenas , Universidades/organização & administração , Academias e Institutos/organização & administração , California , Química Farmacêutica/métodos , Comportamento Cooperativo , Sistemas de Liberação de Medicamentos , Avaliação Pré-Clínica de Medicamentos/métodos , Humanos , Internet , Terapia de Alvo Molecular , Doenças Negligenciadas/tratamento farmacológico , Canais de Potássio de Domínios Poros em Tandem , Setor Privado , Pesquisa Translacional Biomédica/organização & administração
4.
Elife ; 2: e00498, 2013 May 28.
Artigo em Inglês | MEDLINE | ID: mdl-23741617

RESUMO

Phosphorylation of the α-subunit of initiation factor 2 (eIF2) controls protein synthesis by a conserved mechanism. In metazoa, distinct stress conditions activate different eIF2α kinases (PERK, PKR, GCN2, and HRI) that converge on phosphorylating a unique serine in eIF2α. This collection of signaling pathways is termed the 'integrated stress response' (ISR). eIF2α phosphorylation diminishes protein synthesis, while allowing preferential translation of some mRNAs. Starting with a cell-based screen for inhibitors of PERK signaling, we identified a small molecule, named ISRIB, that potently (IC50 = 5 nM) reverses the effects of eIF2α phosphorylation. ISRIB reduces the viability of cells subjected to PERK-activation by chronic endoplasmic reticulum stress. eIF2α phosphorylation is implicated in memory consolidation. Remarkably, ISRIB-treated mice display significant enhancement in spatial and fear-associated learning. Thus, memory consolidation is inherently limited by the ISR, and ISRIB releases this brake. As such, ISRIB promises to contribute to our understanding and treatment of cognitive disorders. DOI:http://dx.doi.org/10.7554/eLife.00498.001.


Assuntos
Cognição , Memória , Biossíntese de Proteínas , RNA Mensageiro/genética , Acetamidas/farmacologia , Animais , Linhagem Celular , Cicloexilaminas/farmacologia , Retículo Endoplasmático/metabolismo , Fator de Iniciação 1 em Eucariotos/antagonistas & inibidores , Fator de Iniciação 1 em Eucariotos/metabolismo , Humanos , Camundongos , Fosforilação , Inibidores de Proteínas Quinases/farmacologia
5.
Beilstein J Org Chem ; 9: 15-25, 2013.
Artigo em Inglês | MEDLINE | ID: mdl-23400640

RESUMO

Inhibition of the Trypanosoma cruzi cysteine protease cruzain has been proposed as a therapeutic approach for the treatment of Chagas' disease. Among the best-studied cruzain inhibitors to date is the vinylsulfone K777 (1), which has proven effective in animal models of Chagas' disease. Recent structure-activity studies aimed at addressing potential liabilities of 1 have now produced analogues such as N-[(2S)-1-[[(E,3S)-1-(benzenesulfonyl)-5-phenylpent-1-en-3-yl]amino]-3-(4-methylphenyl)-1-oxopropan-2-yl]pyridine-4-carboxamide (4), which is trypanocidal at ten-fold lower concentrations than for 1. We now find that the trypanocidal activity of 4 derives primarily from the inhibition of T. cruzi 14-α-demethylase (TcCYP51), a cytochrome P450 enzyme involved in the biosynthesis of ergosterol in the parasite. Compound 4 also inhibits mammalian CYP isoforms but is trypanocidal at concentrations below those required to significantly inhibit mammalian CYPs in vitro. A chemical-proteomics approach employing an activity-based probe derived from 1 was used to identify mammalian cathepsin B as a potentially important off-target of 1 and 4. Computational docking studies and the evaluation of truncated analogues of 4 reveal structural determinants for TcCYP51 binding, information that will be useful in further optimization of this new class of inhibitors.

6.
PLoS Negl Trop Dis ; 6(7): e1736, 2012.
Artigo em Inglês | MEDLINE | ID: mdl-22860142

RESUMO

BACKGROUND: Chagas Disease, a WHO- and NIH-designated neglected tropical disease, is endemic in Latin America and an emerging infection in North America and Europe as a result of population moves. Although a major cause of morbidity and mortality due to heart failure, as well as inflicting a heavy economic burden in affected regions, Chagas Disease elicits scant notice from the pharmaceutical industry because of adverse economic incentives. The discovery and development of new routes to chemotherapy for Chagas Disease is a clear priority. METHODOLOGY/PRINCIPAL FINDINGS: The similarity between the membrane sterol requirements of pathogenic fungi and those of the parasitic protozoon Trypanosoma cruzi, the causative agent of Chagas human cardiopathy, has led to repurposing anti-fungal azole inhibitors of sterol 14α-demethylase (CYP51) for the treatment of Chagas Disease. To diversify the therapeutic pipeline of anti-Chagasic drug candidates we exploited an approach that included directly probing the T. cruzi CYP51 active site with a library of synthetic small molecules. Target-based high-throughput screening reduced the library of ∼104,000 small molecules to 185 hits with estimated nanomolar K(D) values, while cross-validation against T. cruzi-infected skeletal myoblast cells yielded 57 active hits with EC(50) <10 µM. Two pools of hits partially overlapped. The top hit inhibited T. cruzi with EC(50) of 17 nM and was trypanocidal at 40 nM. CONCLUSIONS/SIGNIFICANCE: The hits are structurally diverse, demonstrating that CYP51 is a rather permissive enzyme target for small molecules. Cheminformatic analysis of the hits suggests that CYP51 pharmacology is similar to that of other cytochromes P450 therapeutic targets, including thromboxane synthase (CYP5), fatty acid ω-hydroxylases (CYP4), 17α-hydroxylase/17,20-lyase (CYP17) and aromatase (CYP19). Surprisingly, strong similarity is suggested to glutaminyl-peptide cyclotransferase, which is unrelated to CYP51 by sequence or structure. Lead compounds developed by pharmaceutical companies against these targets could also be explored for efficacy against T. cruzi.


Assuntos
Antiprotozoários/química , Antiprotozoários/isolamento & purificação , Inibidores das Enzimas do Citocromo P-450 , Sistema Enzimático do Citocromo P-450 , Avaliação Pré-Clínica de Medicamentos/métodos , Ensaios de Triagem em Larga Escala/métodos , Simulação de Dinâmica Molecular , Testes de Sensibilidade Parasitária
7.
PLoS Negl Trop Dis ; 5(7): e1253, 2011 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-21811648

RESUMO

The ability to screen compounds in a high-throughput manner is essential in the process of small molecule drug discovery. Critical to the success of screening strategies is the proper design of the assay, often implying a compromise between ease/speed and a biologically relevant setting. Leishmaniasis is a major neglected disease with limited therapeutic options. In order to streamline efforts for the design of productive drug screens against Leishmania, we compared the efficiency of two screening methods, one targeting the free living and easily cultured promastigote (insect-infective) stage, the other targeting the clinically relevant but more difficult to culture intra-macrophage amastigote (mammal-infective) stage. Screening of a 909-member library of bioactive compounds against Leishmania donovani revealed 59 hits in the promastigote primary screen and 27 in the intracellular amastigote screen, with 26 hits shared by both screens. This suggested that screening against the promastigote stage, although more suitable for automation, fails to identify all active compounds and leads to numerous false positive hits. Of particular interest was the identification of one compound specific to the infective amastigote stage of the parasite. This compound affects intracellular but not axenic parasites, suggesting a host cell-dependent mechanism of action, opening new avenues for anti-leishmanial chemotherapy.


Assuntos
Antiprotozoários/farmacologia , Leishmania/efeitos dos fármacos , Leishmaniose/parasitologia , Animais , Antiprotozoários/química , Linhagem Celular Tumoral , Descoberta de Drogas , Ensaios de Triagem em Larga Escala , Interações Hospedeiro-Parasita/efeitos dos fármacos , Humanos , Leishmania/crescimento & desenvolvimento , Estágios do Ciclo de Vida/efeitos dos fármacos , Macrófagos/parasitologia , Naloxona/análogos & derivados , Naloxona/química , Naloxona/farmacologia , Bibliotecas de Moléculas Pequenas/química , Bibliotecas de Moléculas Pequenas/farmacologia
8.
PLoS Negl Trop Dis ; 5(5): e1023, 2011 May 03.
Artigo em Inglês | MEDLINE | ID: mdl-21572521

RESUMO

The targeting of parasite cysteine proteases with small molecules is emerging as a possible approach to treat tropical parasitic diseases such as sleeping sickness, Chagas' disease, and malaria. The homology of parasite cysteine proteases to the human cathepsins suggests that inhibitors originally developed for the latter may be a source of promising lead compounds for the former. We describe here the screening of a unique ∼ 2,100-member cathepsin inhibitor library against five parasite cysteine proteases thought to be relevant in tropical parasitic diseases. Compounds active against parasite enzymes were subsequently screened against cultured Plasmodium falciparum, Trypanosoma brucei brucei and/or Trypanosoma cruzi parasites and evaluated for cytotoxicity to mammalian cells. The end products of this effort include the identification of sub-micromolar cell-active leads as well as the elucidation of structure-activity trends that can guide further optimization efforts.


Assuntos
Antiparasitários/isolamento & purificação , Antiparasitários/metabolismo , Cisteína Proteases/metabolismo , Avaliação Pré-Clínica de Medicamentos , Inibidores de Proteases/isolamento & purificação , Inibidores de Proteases/metabolismo , Testes de Sensibilidade Parasitária , Plasmodium falciparum/efeitos dos fármacos , Trypanosoma brucei brucei/efeitos dos fármacos , Trypanosoma cruzi/efeitos dos fármacos
9.
J Microbiol Methods ; 84(3): 398-405, 2011 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-21262276

RESUMO

Giardia lamblia is a protozoan parasite that causes widespread gastrointestinal illness. Drugs to treat giardiasis are limited, but efforts to discover new anti-giardial compounds are constrained by the lack of a facile system for cell culture and inhibitor testing. We achieved robust and reproducible growth of G. lamblia in 384-well tissue culture plates in a modified TYI-S-33 medium. A high throughput assay for the screening of potential anti-giardial compounds was developed utilizing the WB strain of G. lamblia and automated optical detection of parasites after growth with tested inhibitors. We screened a library of 1600 known bioactive molecules and identified 12 compounds that inhibited growth of G. lamblia at low- or sub-micromolar concentrations. Our high throughput assay should facilitate evaluation of available chemical libraries for novel drugs to treat giardiasis.


Assuntos
Antiprotozoários/farmacologia , Avaliação Pré-Clínica de Medicamentos/métodos , Giardia lamblia/efeitos dos fármacos , Ensaios de Triagem em Larga Escala , Processamento de Imagem Assistida por Computador/métodos , Animais , Giardia lamblia/crescimento & desenvolvimento , Testes de Sensibilidade Parasitária/métodos
10.
Antimicrob Agents Chemother ; 54(8): 3326-34, 2010 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-20547819

RESUMO

Chagas' disease, caused by infection with the parasite Trypanosoma cruzi, is the major cause of heart failure in Latin America. Classic clinical manifestations result from the infection of heart muscle cells leading to progressive cardiomyopathy. To ameliorate disease, chemotherapy must eradicate the parasite. Current drugs are ineffective and toxic, and new therapy is a critical need. To expedite drug screening for this neglected disease, we have developed and validated a cell-based, high-throughput assay that can be used with a variety of untransfected T. cruzi isolates and host cells and that simultaneously measures efficacy against the intracellular amastigote stage and toxicity to host cells. T. cruzi-infected muscle cells were incubated in 96-well plates with test compounds. Assay plates were automatically imaged and analyzed based on size differences between the DAPI (4',6-diamidino-2-phenylindole)-stained host cell nuclei and parasite kinetoplasts. A reduction in the ratio of T. cruzi per host cell provided a quantitative measure of parasite growth inhibition, while a decrease in count of the host nuclei indicated compound toxicity. The assay was used to screen a library of clinically approved drugs and identified 55 compounds with activity against T. cruzi. The flexible assay design allows the use of various parasite strains, including clinical isolates with different biological characteristics (e.g., tissue tropism and drug sensitivity), and a broad range of host cells and may even be adapted to screen for inhibitors against other intracellular pathogens. This high-throughput assay will have an important impact in antiparasitic drug discovery.


Assuntos
Avaliação Pré-Clínica de Medicamentos/métodos , Hepatócitos/parasitologia , Ensaios de Triagem em Larga Escala/métodos , Processamento de Imagem Assistida por Computador/métodos , Músculo Esquelético/parasitologia , Tripanossomicidas/farmacologia , Trypanosoma cruzi/efeitos dos fármacos , Animais , Bovinos , Linhagem Celular , Linhagem Celular Tumoral , Doença de Chagas/tratamento farmacológico , Doença de Chagas/parasitologia , Hepatócitos/citologia , Hepatócitos/ultraestrutura , Humanos , Músculo Esquelético/citologia , Músculo Esquelético/ultraestrutura , Testes de Sensibilidade Parasitária , Trypanosoma cruzi/crescimento & desenvolvimento
11.
Bioorg Med Chem Lett ; 19(21): 6218-21, 2009 Nov 01.
Artigo em Inglês | MEDLINE | ID: mdl-19773167

RESUMO

We describe here the identification of non-peptidic vinylsulfones that inhibit parasite cysteine proteases in vitro and inhibit the growth of Trypanosoma brucei brucei parasites in culture. A high resolution (1.75 A) co-crystal structure of 8a bound to cruzain reveals how the non-peptidic P2/P3 moiety in such analogs bind the S2 and S3 subsites of the protease, effectively recapitulating important binding interactions present in more traditional peptide-based protease inhibitors and natural substrates.


Assuntos
Amidas/química , Cisteína Proteases/química , Inibidores de Proteases/química , Sulfonas/química , Tripanossomicidas/química , Amidas/farmacologia , Sítios de Ligação , Cristalografia por Raios X , Cisteína Proteases/metabolismo , Humanos , Células Jurkat , Inibidores de Proteases/síntese química , Inibidores de Proteases/toxicidade , Estrutura Terciária de Proteína , Sulfonas/síntese química , Sulfonas/farmacologia , Sulfonas/toxicidade , Tripanossomicidas/síntese química , Tripanossomicidas/toxicidade , Trypanosoma brucei brucei/efeitos dos fármacos
12.
J Med Chem ; 52(16): 5005-8, 2009 Aug 27.
Artigo em Inglês | MEDLINE | ID: mdl-19637873

RESUMO

A docking screen identified reversible, noncovalent inhibitors (e.g., 1) of the parasite cysteine protease cruzain. Chemical optimization of 1 led to a series of oxadiazoles possessing interpretable SAR and potencies as much as 500-fold greater than 1. Detailed investigation of the SAR series subsequently revealed that many members of the oxadiazole class (and surprisingly also 1) act via divergent modes of inhibition (competitive or via colloidal aggregation) depending on the assay conditions employed.


Assuntos
Inibidores de Cisteína Proteinase/química , Proteínas de Protozoários/antagonistas & inibidores , Tripanossomicidas/química , Trypanosoma cruzi/efeitos dos fármacos , Coloides , Cisteína Endopeptidases/química , Inibidores de Cisteína Proteinase/síntese química , Inibidores de Cisteína Proteinase/farmacologia , Bases de Dados Factuais , Glicolatos/síntese química , Glicolatos/química , Glicolatos/farmacologia , Modelos Moleculares , Oxidiazóis/síntese química , Oxidiazóis/química , Oxidiazóis/farmacologia , Testes de Sensibilidade Parasitária , Proteínas de Protozoários/química , Relação Estrutura-Atividade , Tripanossomicidas/síntese química , Tripanossomicidas/farmacologia , Trypanosoma cruzi/enzimologia
13.
PLoS Negl Trop Dis ; 3(2): e372, 2009.
Artigo em Inglês | MEDLINE | ID: mdl-19190730

RESUMO

BACKGROUND: The two front-line drugs for chronic Trypanosoma cruzi infections are limited by adverse side-effects and declining efficacy. One potential new target for Chagas' disease chemotherapy is sterol 14alpha-demethylase (CYP51), a cytochrome P450 enzyme involved in biosynthesis of membrane sterols. METHODOLOGY/PRINCIPAL FINDING: In a screening effort targeting Mycobacterium tuberculosis CYP51 (CYP51(Mt)), we previously identified the N-[4-pyridyl]-formamide moiety as a building block capable of delivering a variety of chemotypes into the CYP51 active site. In that work, the binding modes of several second generation compounds carrying this scaffold were determined by high-resolution co-crystal structures with CYP51(Mt). Subsequent assays against the CYP51 orthologue in T. cruzi, CYP51(Tc), demonstrated that two of the compounds tested in the earlier effort bound tightly to this enzyme. Both were tested in vitro for inhibitory effects against T. cruzi and the related protozoan parasite Trypanosoma brucei, the causative agent of African sleeping sickness. One of the compounds had potent, selective anti-T. cruzi activity in infected mouse macrophages. Cure of treated host cells was confirmed by prolonged incubation in the absence of the inhibiting compound. Discrimination between T. cruzi and T. brucei CYP51 by the inhibitor was largely based on the variability (phenylalanine versus isoleucine) of a single residue at a critical position in the active site. CONCLUSIONS/SIGNIFICANCE: CYP51(Mt)-based crystal structure analysis revealed that the functional groups of the two tightly bound compounds are likely to occupy different spaces in the CYP51 active site, suggesting the possibility of combining the beneficial features of both inhibitors in a third generation of compounds to achieve more potent and selective inhibition of CYP51(Tc).


Assuntos
Inibidores das Enzimas do Citocromo P-450 , Inibidores Enzimáticos/farmacologia , Inibidores Enzimáticos/uso terapêutico , Mycobacterium tuberculosis/enzimologia , Tripanossomicidas/farmacologia , Tripanossomicidas/uso terapêutico , Trypanosoma cruzi , Animais , Bovinos , Sobrevivência Celular/efeitos dos fármacos , Células Cultivadas , Doença de Chagas/tratamento farmacológico , Doença de Chagas/parasitologia , Sistema Enzimático do Citocromo P-450 , Inibidores Enzimáticos/efeitos adversos , Humanos , Concentração Inibidora 50 , Camundongos , Mycobacterium tuberculosis/efeitos dos fármacos , Testes de Sensibilidade Parasitária , Tripanossomicidas/efeitos adversos , Trypanosoma cruzi/efeitos dos fármacos , Trypanosoma cruzi/enzimologia
14.
J Nat Prod ; 65(4): 476-80, 2002 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-11975483

RESUMO

In addition to the sesquiterpene-phenol aureols (1), 6'-chloroaureol (2), and aureol acetate (3), eight indole alkaloids including the new N-3'-ethylaplysinopsin (9) have been isolated from the Jamaican sponge Smenospongia aurea. Makaluvamine O (10), a new member of the pyrroloiminoquinone class, was also isolated. The structures were characterized by spectroscopic methods, and two new derivatives of aureol were prepared to optimize the biological activity. Aureol N,N-dimethyl thiocarbamate (1a) and 6-bromoaplysinopsin (7) exhibit significant antimalarial and antimycobacterial activity in vitro. Compound 6 showed activity against the Plasmodium enzyme plasmepsin II. The 6-bromo-2'-de-N-methylaplysinopsin (6), 6-bromoaplysinopsin (7), and N-3'-ethylaplysinopsin (9) displaced high-affinity [(3)H]antagonist ligands from cloned human serotonin 5-HT(2) receptor subtypes, whereas the other compounds tested did not. Remarkably, the 6-bromo-2'-de-N-methylaplysinopsin (6) showed a > 40-fold selectivity for the 5-HT(2C) subtype over the 5-HT(2A) subtype.


Assuntos
Anti-Infecciosos/isolamento & purificação , Antimaláricos/isolamento & purificação , Poríferos/química , Receptores de Serotonina/efeitos dos fármacos , Sesquiterpenos/isolamento & purificação , Animais , Anti-Infecciosos/química , Anti-Infecciosos/farmacologia , Antimaláricos/química , Antimaláricos/farmacologia , Ácido Aspártico Endopeptidases/metabolismo , Membrana Celular/efeitos dos fármacos , Células Cultivadas/efeitos dos fármacos , Chlorocebus aethiops , Humanos , Alcaloides Indólicos/química , Alcaloides Indólicos/isolamento & purificação , Alcaloides Indólicos/farmacologia , Jamaica , Conformação Molecular , Estrutura Molecular , Ressonância Magnética Nuclear Biomolecular , Proteínas de Protozoários , Pirróis/química , Pirróis/isolamento & purificação , Pirróis/farmacologia , Quinonas/química , Quinonas/isolamento & purificação , Quinonas/farmacologia , Sesquiterpenos/química , Sesquiterpenos/farmacologia
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...