Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Mais filtros











Base de dados
Intervalo de ano de publicação
1.
J Hazard Mater ; 403: 123639, 2021 02 05.
Artigo em Inglês | MEDLINE | ID: mdl-33264859

RESUMO

Nanoscale zero-valent iron (NZVI) and NZVI supported onto montmorillonite (NZVI-Mt) were synthetized and used in this study to remove SeVI and AsV from water in mono- and binary-adsorbate systems. The adsorption kinetics and isotherm data for SeVI and AsV were adequately described by the pseudo-second-order (PSO) (r2>0.94) and Freundlich (r2>0.93) equations. Results from scanning electron microscopy showed that the dimension of the NZVI immobilized on the Mt was smaller than pure NZVI. Using 0.05 g of adsorbent and an initial 200 mg L-1 AsV and SeVI concentration, the maximum adsorption capacity (qmax) and partition coefficient (PC) for AsV on NZVI-Mt in monocomponent system were 54.75 mg g-1 and 0.065 mg g-1·µM-1, which dropped respectively to 49.91 mg g-1 and 0.055 mg g-1·µM-1 under competitive system. For SeVI adsorption on NZVI-Mt in monocomponent system, qmax and PC were 28.63 mg g-1 and 0.024 mg g-1·µM-1, respectively. Values of qmax and PC were higher for NZVI-Mt than NZVI and montmorillonite, indicating that the nanocomposite contained greater adsorption sites for removing both oxyanions, but with a marked preference for AsV. Future research should evaluate the effect of different operational variables on the removal efficiency of both oxyanions by NZVI-Mt.

2.
Ecotoxicol Environ Saf ; 145: 69-77, 2017 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-28708983

RESUMO

The application of iron nanoparticles (FeNPs) to the removal of various pollutants has received wide attention over the last few decades. A synthesis alternative to obtain these nanoparticles without using harmful chemical reagents, such as NaBH4, is the use of extracts from different natural sources that allow a lesser degree of agglomeration, in a process known as green synthesis. In this study, FeNPs were synthesized by 'green' (hereafter, BB-Fe NPs) and 'chemical' (hereafter, nZVI) methods. Extracts of leaves and blueberry shoots (Vaccinium corymbosum) were used as reducing agents for FeCl3·6H2O solution in the green synthesis method. FeNPs were characterized using transmission electron microscopy (TEM), scanning electron microscopy (SEM), electrophoretic migration, Brunauer-Emmett-Teller (BET) surface area analysis and X-ray diffraction (XRD) and evaluated for the removal of As(V) from aqueous systems. In both synthesis methods, XRD analysis confirmed the presence of the different kinds of iron nanoparticles. SEM analysis showed that the average size of BB-Fe NPs was 52.4nm and that a variety of nanoparticles of different forms and associated structures, such as lepidocrocite, magnetite, and nZVI, were present, while the dimensions of nZVI were 80.2nm. Comparatively significant differences regarding the electrophoretic mobility were found between both materials pre- and post-sorption of As(V). The velocity of As(V) removal by BB-Fe NPs was slower than that by nZVI, reaching equilibrium at 120min compared to 60min for nZVI. The removal kinetics of As(V) were adequately described by the pseudo-second-order kinetic model, and the maximum adsorbed amounts of this analyte are in close accordance with the experimental results. The Langmuir-Freundlich model is in good agreement with our experimental data, where the sorption capacity of nZVI and BB-Fe NPs was found to be 52.23 ± 6.06 and 50.40 ± 5.90 (mg·g-1), respectively. The use of leaves of Vaccinium corymbosum affords an easy-to-synthesize, low-cost, and eco-friendly material with capabilities similar to nZVI. BB-Fe NPs are promising for arsenic remediation, which has emerged as a new alternative for water purification and sanitation.


Assuntos
Arseniatos/análise , Mirtilos Azuis (Planta)/química , Ferro/química , Nanopartículas/química , Poluentes Químicos da Água/análise , Purificação da Água/métodos , Adsorção , Compostos Férricos/química , Química Verde , Propriedades de Superfície
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA