Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Mais filtros











Base de dados
Intervalo de ano de publicação
1.
Water Res ; 212: 118080, 2022 Apr 01.
Artigo em Inglês | MEDLINE | ID: mdl-35114526

RESUMO

Micropollutants (MPs) released into aquatic ecosystems have adverse effects on public health. Hence, monitoring and managing MPs in aquatic systems are imperative. MPs can be quantified by high-resolution mass spectrometry (HRMS) with stable isotope-labeled (SIL) standards. However, high cost of SIL solutions is a significant issue. This study aims to develop a rapid and cost-effective analytical approach to estimate MP concentrations in aquatic systems based on deep learning (DL) and multi-objective optimization. We hypothesized that internal standards could quantify the MP concentrations other than the target substance. Our approach considered the precision of intra-/inter-day repeatability and natural organic matter information to reduce instrumental error and matrix effect. We selected standard solutions to estimate the concentrations of 18 MPs. Among the optimal DL models, DarkNet-53 using nine standard solutions yielded the highest performance, while ResNet-50 yielded the lowest. Overall, this study demonstrated the capability of DL models for estimating MP concentrations.


Assuntos
Aprendizado Profundo , Ecossistema , Isótopos , Espectrometria de Massas , Padrões de Referência
2.
Adv Sci (Weinh) ; 8(18): e2101289, 2021 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-34319013

RESUMO

Rechargeable seawater battery (SWB) is a unique energy storage system that can directly transform seawater into renewable energy. Placing a desalination compartment between SWB anode and cathode (denoted as seawater battery desalination; SWB-D) enables seawater desalination while charging SWB. Since seawater desalination is a mature technology, primarily occupied by membrane-based processes such as reverse osmosis (RO), the energy cost has to be considered for alternative desalination technologies. So far, the feasibility of the SWB-D system based on the unit cost per desalinated water ($ m-3 ) has been insufficiently discussed. Therefore, this perspective aims to provide this information and offer future research directions based on the detailed cost analysis. Based on the calculations, the current SWB-D system is expected to have an equipment cost of ≈1.02 $ m-3 (lower than 0.60-1.20 $ m-3 of RO), when 96% of the energy is recovered and stable performance for 1000 cycles is achieved. The anion exchange membrane (AEM) and separator contributes greatly to the material cost occupying 50% and 41% of the total cost, respectively. Therefore, future studies focusing on creating low cost AEMs and separators will pave the way for the large-scale application of SWB-D.

3.
Chem Rec ; 21(4): 820-840, 2021 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-33645913

RESUMO

Capacitive deionization (CDI) is a potential technology to provide cost efficient desalinated and/or softened water. Several efforts have been invested in the fabrication of CDI electrodes that not only has outstanding performance but also high chance of large scalability. In this personal account, the different techniques in developing carbon-based materials are presented together with its actual effect on the surface and electrochemical properties of carbon. The categories presented are based on the studies done by the Electrochemical Reaction and Technology Laboratory, the Ertl Center, different research groups in South Korea, and selected papers from the past three years. Our perspective about research gaps and prospects are also included with the aim to increase interest for CDI research.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA