Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 96
Filtrar
Mais filtros











Base de dados
Intervalo de ano de publicação
1.
Angew Chem Int Ed Engl ; 62(16): e202300003, 2023 Apr 11.
Artigo em Inglês | MEDLINE | ID: mdl-36791229

RESUMO

We report a synthetic strategy to link titanium-oxo (Ti-oxo) clusters into metal-organic framework (MOF) glasses with high porosity though the carboxylate linkage. A new series of MOF glasses was synthesized by evaporation of solution containing Ti-oxo clusters Ti16 O16 (OEt)32 , linkers, and m-cresol. The formation of carboxylate linkages between the Ti-oxo clusters and the carboxylate linkers was confirmed by Fourier-transform infrared (FT-IR) spectroscopy. The structural integrity of the Ti-oxo clusters within the glasses was evidenced by both X-ray absorption near edge structure (XANES) and 17 O magic-angle spinning (MAS) NMR. After ligand exchange and activation, the fumarate-linked MOF glass, termed Ti-Fum, showed a N2 Brunauer-Emmett-Teller (BET) surface areas of 923 m2 g-1 , nearly three times as high as the phenolate-linked MOF glass with the highest BET surface area prior to this report.

2.
J Phys Chem B ; 125(28): 7855-7862, 2021 07 22.
Artigo em Inglês | MEDLINE | ID: mdl-34250812

RESUMO

Superacids have been the source of much spectacular chemistry but very little interesting physics despite the fact that the states of cations formed by transfer of the superacid proton to molecular bases can approach that of the cations in free space. Indeed, some of the very strongest acids, such as HPF6 and HAlCl4, have no independent existence due to lack of screening of the bare proton self-energy: their acidities can only be assessed by study of the conjugate bases. Here we show that, by allowing the protons of transient HAlCl4 and HAlBr4 to relocate on pentafluoropyridine, PFP (a very weak base that is stable to superacids), we can create glass forming protic ionic liquids (PILs) that are themselves superacids but, being free of superacid vapors, are of benign character. At Tg, conductivities exceed "good" ionic liquid values by 9 decades, so must be superprotonic. Anomalous Walden plots confirm superprotonicity.


Assuntos
Líquidos Iônicos , Ácidos , Cátions , Condutividade Elétrica , Prótons
3.
J Phys Chem Lett ; 11(9): 3301-3304, 2020 May 07.
Artigo em Inglês | MEDLINE | ID: mdl-32242412

RESUMO

Ionic and molecular plastic crystals have been studied recently as solid electrolytes or solvents, but the specific role of molecular reorientation has not been clarified. We use NMR spin-lattice relaxation times (T1 minima) to compare the time scale for magnetic fluctuations in a plastic crystal solvent to the molecular reorientation times, as established by dielectric spectroscopy. We focus on a mixture of succinonitrile and glutaronitrile, in which the rotationally disordered phase is stabilized against crystallization. Reorientation times can then be studied over 13 orders of magnitude, down to the glass transition temperature at 144 K. For each nucleus, 1H and 13C, the most probable magnetic fluctuation time is found to be slightly shorter than the reorientation time, but with practically indistinguishable temperature dependence. This facilitates investigation of the relation of solvent reorientation to ion conductivity relaxation times in ionic conducting systems in which the conductivity swamps the dielectric signature of solvent reorientation.

4.
J Phys Chem B ; 123(8): 1815-1821, 2019 02 28.
Artigo em Inglês | MEDLINE | ID: mdl-30779573

RESUMO

Protic ionic liquids (PILs) are made by proton transfer from a Brønsted acid to a base and are of interest for their solvent and electrolyte properties such as high ionic conductivity. Unfortunately, many PILs have been misnamed, because their ionic content is minimal due to an insufficient driving force for the proton transfer. Here we review this problem and introduce a new method, using 15N NMR spectroscopy, of characterizing the relation between the extent of proton transfer to a given base and the strength of the proton-donating acid. The experimental data reveal a sigmoid "titration type" curve that indicates clearly the acid strength, at which molecule bases, of substituted pyridine type, are fully protonated. We compare results for two bases of similar shape but different basicity, protonated by equimolar amounts of the different acids. The extent of protonation is also reflected in the ionic conductivity, and we show that the important part of the protonation sigmoid is quantitatively reproduced by data for conductivity and viscosity displayed in the form of a Walden plot (log equivalent conductivity vs log fluidity). The acid strength, for this study, is based on gas phase proton affinities, but we note that a similar sigmoid is obtained if we use the condensed phase Hammett acidity functions instead. Our findings allow us to rank the AlCl4- anion as the weakest proton acceptor in use in IL studies, consistent with its role in the most conductive ILs.

5.
Sci Adv ; 4(11): eaat8632, 2018 11.
Artigo em Inglês | MEDLINE | ID: mdl-30515453

RESUMO

The dynamic properties of liquid phase-change materials (PCMs), such as viscosity η and the atomic self-diffusion coefficient D, play an essential role in the ultrafast phase switching behavior of novel nonvolatile phase-change memory applications. To connect η to D, the Stokes-Einstein relation (SER) is commonly assumed to be valid at high temperatures near or above the melting temperature T m and is often used for assessing liquid fragility (or crystal growth velocity) of technologically important PCMs. However, using quasi-elastic neutron scattering, we provide experimental evidence for a breakdown of the SER even at temperatures above T m in the high-atomic mobility state of a PCM, Ge1Sb2Te4. This implies that although viscosity may have strongly increased during cooling, diffusivity can remain high owing to early decoupling, being a favorable feature for the fast phase switching behavior of the high-fluidity PCM. We discuss the origin of the observation and propose the possible connection to a metal-semiconductor and fragile-strong transition hidden below T m.

6.
Science ; 359(6380): 1127-1131, 2018 03 09.
Artigo em Inglês | MEDLINE | ID: mdl-29590040

RESUMO

Simulations and theory suggest that the thermodynamic anomalies of water may be related to a phase transition between two supercooled liquid states, but so far this phase transition has not been observed experimentally because of preemptive ice crystallization. We used calorimetry, infrared spectroscopy, and molecular dynamics simulations to investigate a water-rich hydrazinium trifluoroacetate solution in which the local hydrogen bond structure surrounding a water molecule resembles that in neat water at elevated pressure, but which does not crystallize upon cooling. Instead, this solution underwent a sharp, reversible phase transition between two homogeneous liquid states. The hydrogen-bond structures of these two states are similar to those established for high- and low-density amorphous (HDA and LDA) water. Such structural similarity supports theories that predict a similar sharp transition in pure water under pressure if ice crystallization could be suppressed.

7.
Biochim Biophys Acta Gen Subj ; 1861(1 Pt B): 3540-3545, 2017 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-27217072

RESUMO

BACKGROUND: Glycerol and sorbitol are glass-forming hydrogen-bonded systems characterized by intriguing properties which make these systems very interesting also from the applications point of view. The goal of this work is to relate the hydrogen-bonded features, relaxation dynamics, glass transition properties and fragility of these systems, in particular to seek insight into their very different liquid fragilities. METHODS: The comparison between glycerol and sorbitol is carried out by collecting the elastic incoherent neutron scattering (EINS) intensity as a function of temperature and of the instrumental energy resolution. RESULTS: Intensity data vs temperature and resolution are analyzed in terms of thermal restraint and Resolution Elastic Neutron Scattering (RENS) approaches. CONCLUSIONS: The number of OH groups, which are related to the connecting sites, is a significant parameter both in the glass transition and in the dynamical transition. On the other hand, the disordered nature of sorbitol is confirmed by the existence of different relaxation processes. GENERAL SIGNIFICANCE: From the applications point of view, glycerol and sorbitol have remarkable bioprotectant properties which make these systems useful in different technological and industrial fields. Furthermore, polyols are rich in glassforming liquid phenomenology and highly deserving of study in their own right. The comparison of EINS and calorimetric data on glycerol and sorbitol helps provide a connection between structural relaxation, dynamical transition, glass transition, and fragility. The evaluation of the inflection point in the elastic intensity behavior as a function of temperature and instrumental energy resolution provides a confirmation of the validity of the RENS approach. This article is part of a Special Issue entitled "Science for Life" Guest Editor: Dr. Austen Angell, Dr. Salvatore Magazù and Dr. Federica Migliardo.


Assuntos
Eletricidade , Vidro/química , Glicerol/química , Difração de Nêutrons , Sorbitol/química , Elasticidade , Temperatura , Fatores de Tempo
9.
Phys Rev Lett ; 117(14): 142501, 2016 Sep 30.
Artigo em Inglês | MEDLINE | ID: mdl-27740789

RESUMO

In recent measurements of the scissors mode in radiative decay experiments, transition strengths were observed that were double that expected from theory and systematics well established from measurements on the radiative excitation channel, that is, using nuclear resonance fluorescence (NRF). Additional strength as measured with NRF can only be present as heretofore unobserved branching or fragmentation of the scissors mode. Such possibilities were investigated in a transmission NRF measurement on the deformed, odd-mass ^{181}Ta, using a quasimonoenergetic γ-ray beam at two beam energies. This measurement further influences applications using transmission NRF to assay or detect odd-mass fissile isotopes. A large branching, ≈75%, of small resonances to excited states was discovered. In contrast, previous studies using NRF of the scissors-mode strength in odd-mass nuclei assumed no branching existed. The presently observed branching, combined with the observed highly fragmented elastic strength, could reconcile the scissors-mode strength observed in NRF measurements with the expectations for enhanced scissors-mode strength from radiative decay experiments.

10.
Chemistry ; 22(37): 13312-9, 2016 Sep 05.
Artigo em Inglês | MEDLINE | ID: mdl-27490171

RESUMO

The need for reliable means of ordering and quantifying the Lewis basicity of anions is discussed and the currently available methods are reviewed. Concluding that there is need for a simple impurity-insensitive tool, we have sought, and here describe, a new method using NMR spectroscopy of a weak base, a substituted urea, 1,3-dimethyl-2-imidazolidinone (DMI), as it is protonated by Brønsted acids of different strengths and characters. In all cases studied the product of protonation is a liquid (hence a protic ionic liquid). NMR spectroscopy detects changes in the electronic structure of the base upon interaction with the proton donors. As the proton-donating ability, that is, acidity, increases, there is a smooth but distinct transition from a hydrogen-bonded system (with no net proton transfer) to full ionicity. The liquid state of the samples and high concentration of nitrogen atoms, despite the very low natural abundance of its preferred NMR-active isotope ((15) N), make possible the acquisition of (15) N spectra in a relatively short time. These (15) N, along with (13) C, chemical shifts of the carbonyl atom, and their relative responses to protonation of the carbonyl oxygen, can be used as a means, sensitive to anion basicity and relatively insensitive to impurities, to sort anions in order of increasing hydrogen bond basicity. The order is found to be as follows: SbF6 (-) ClO4 (-) >FSO3 (-)

11.
J Am Chem Soc ; 138(34): 10818-21, 2016 08 31.
Artigo em Inglês | MEDLINE | ID: mdl-27539546

RESUMO

While glassy materials can be made from virtually every class of liquid (metallic, molecular, covalent, and ionic), to date, formation of glasses in which structural units impart porosity on the nanoscopic level remains undeveloped. In view of the well-established porosity of metal-organic frameworks (MOFs) and the flexibility of their design, we have sought to combine their formation principles with the general versatility of glassy materials. Although the preparation of glassy MOFs can be achieved by amorphization of crystalline frameworks, transparent glassy MOFs exhibiting permanent porosity accessible to gases are yet to be reported. Here, we present a generalizable chemical strategy for making such MOF glasses by assembly from viscous solutions of metal node and organic strut and subsequent evaporation of a plasticizer-modulator solvent. This process yields glasses with 300 m(2)/g internal surface area (obtained from N2 adsorption isotherms) and a 2 nm pore-pore separation. On a volumetric basis, this porosity (0.33 cm(3)/cm(3)) is 3 times that of the early MOFs (0.11 cm(3)/cm(3) for MOF-2) and within range of the most porous MOFs known (0.60 cm(3)/cm(3) for MOF-5). We believe the porosity originates from a 3D covalent network as evidenced by the disappearance of the glass transition signature as the solvent is removed and the highly cross-linked nanostructure builds up. Our work represents an important step forward in translating the versatility and porosity of MOFs to glassy materials.

12.
J Phys Chem B ; 120(18): 4279-85, 2016 05 12.
Artigo em Inglês | MEDLINE | ID: mdl-27088704

RESUMO

The ionicity and transport properties of a series of diethylmethylamine (DEMA) based protic ionic liquids (PILs) were characterized, principally utilizing nuclear magnetic resonance (NMR) spectroscopy. PILs were formed via the protonation of DEMA by an array of acids spanning a large range of acidities. A correlation between the (1)H chemical shift of the exchangeable proton and the acidity of the acid used for the synthesis of the PIL was observed. The gas phase proton affinity of the acid was found to be a better predictor of the extent of proton transfer than the commonly used aqueous ΔpKa. Pulsed field gradient (PFG) NMR was used to determine the diffusivity of the exchangeable proton in a subset of the PILs. The exchangeable proton diffuses with the acid if the PIL is synthesized with a weak acid, and with the base if a strong acid is used. The ionicity of the PILs was characterized using the Walden analysis and by comparing to the ideal Nernst-Einstein conductivity predicted from the (1)H PFG-NMR results.

13.
Angew Chem Int Ed Engl ; 55(7): 2474-7, 2016 Feb 12.
Artigo em Inglês | MEDLINE | ID: mdl-26756943

RESUMO

The striking increases in response functions observed during supercooling of pure water have been the source of much interest and controversy. Imminent divergences of compressibility etc. unfortunately cannot be confirmed due to pre-emption by ice crystallization. Crystallization can be repressed by addition of second components, but these usually destroy the anomalies of interest. Here we study systems in which protic ionic liquid second components dissolve ideally in water, and ice formation is avoided without destroying the anomalies. We observe a major heat capacity spike during cooling, which is reversed during heating, and is apparently of first order. It occurs just before the glassy state is reached and is preceded by water-like density anomalies. We propose that it is the much-discussed liquid-liquid transition previously hidden by crystallization. Fast cooling should allow the important fluctuations/structures to be preserved in the glassy state for leisurely investigation.

14.
J Chem Phys ; 142(22): 224501, 2015 Jun 14.
Artigo em Inglês | MEDLINE | ID: mdl-26071714

RESUMO

The slope of the coexistence line of the liquid-liquid phase transition can be positive, negative, or zero. All three possibilities have been found in Monte-Carlo simulations of a modified spherically symmetric two-scale Jagla model. Since the liquid-liquid critical point frequently lies in a region of the phase diagram that is difficult to access experimentally, it is of great interest to study critical phenomena in the supercritical region. We therefore study the properties of the Widom line, defined in the one-phase region above the critical point as an extension of the coexistence line near which the loci of various response functions extrema asymptotically converge with each other. This phenomenon is predicted by the scaling theory according to which all response functions can be expressed asymptotically in the vicinity of a critical point as functions of the diverging correlation length. We find that the method of identifying the Widom line as the loci of heat capacity maxima becomes unfruitful when the slope of the coexistence line approaches zero in the T-P plane. In this case, the specific heat displays no maximum in the one-phase region because, for a horizontal phase coexistence line, according to the Clapeyron equation, the enthalpy difference between the coexisting phases is zero, and thus the critical fluctuations do not contribute to enthalpy fluctuations. The extension of the coexistence line beyond the critical point into the one-phase region must in this case be performed using density fluctuations. Although the line of compressibility maxima bifurcates into a symmetrical pair of lines, it remains well-defined. We also study how the glass transition changes as the slope of the coexistence line in the T-P plane approaches zero. We find that for the case of positive slopes, diffusivity shows a fragile-to-strong transition upon crossing the Widom line, while for horizontal slope, diffusivity shows the behavior typical for fragile liquids.

15.
J Chem Phys ; 142(10): 104506, 2015 Mar 14.
Artigo em Inglês | MEDLINE | ID: mdl-25770550

RESUMO

We discuss the dynamic behavior of two silica models, the BKS model (by van Beest, Kramer, and van Santen) and the WAC model (by Woodcock, Angell, and Cheeseman). Although BKS is considered the more realistic model for liquid silica, the WAC model has the unique property that it is very close to having a liquid-liquid critical point (LLCP), and this makes it particularly useful in studying the dynamics of models that do have a LLCP. We find that the diffusivity is a good indicator of how close a liquid is to criticality--the Si diffusivity shows a jump of 3-4 orders of magnitude when the pressure is reduced, which may be interpreted as an abrupt (though not first-order) transition from a high-density liquid state to a low-density liquid state. We show that this transition is captured by the Adam-Gibbs relation, which also allows us to estimate the configurational entropy of the system.

16.
Appl Radiat Isot ; 98: 34-9, 2015 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-25618737

RESUMO

The deposition velocity of radon progeny is used to model the removal of progeny from the air by surfaces in assessing indoor air quality. It can also be used to assess radon-induced background in sensitive, low-background experiments. A single value of the deposition velocity is typically used for all radon progeny for modeling purposes. This paper presents a method for uniquely determining the individual deposition velocities of radon progeny. Measurements demonstrating the method were carried out.

17.
Nat Mater ; 13(7): 673-5, 2014 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-24947781
18.
J Chem Phys ; 140(22): 224502, 2014 Jun 14.
Artigo em Inglês | MEDLINE | ID: mdl-24929402

RESUMO

Previous research has indicated the possible existence of a liquid-liquid critical point (LLCP) in models of silica at high pressure. To clarify this interesting question we run extended molecular dynamics simulations of two different silica models (WAC and BKS) and perform a detailed analysis of the liquid at temperatures much lower than those previously simulated. We find no LLCP in either model within the accessible temperature range, although it is closely approached in the case of the WAC potential near 4000 K and 5 GPa. Comparing our results with those obtained for other tetrahedral liquids, and relating the average Si-O-Si bond angle and liquid density at the model glass temperature to those of the ice-like ß-cristobalite structure, we conclude that the absence of a critical point can be attributed to insufficient "stiffness" in the bond angle. We hypothesize that a modification of the potential to mildly favor larger average bond angles will generate a LLCP in a temperature range that is accessible to simulation. The tendency to crystallize in these models is extremely weak in the pressure range studied, although this tendency will undoubtedly increase with increasing stiffness.

19.
Rev Sci Instrum ; 84(7): 073906, 2013 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-23902083

RESUMO

We present a broadband impedance spectroscopy instrument designed to measure conductivity and∕or permittivity for samples that are sealed in glass tubes, such as the standard 5 mm tubes used for nuclear magnetic resonance experiments. The calibrations and corrections required to extract the dielectric properties of the sample itself are outlined. It is demonstrated that good estimates of the value of dc-conductivity can be obtained even without correcting for the effects of glass or air on the overall impedance. The approach is validated by comparing data obtained from samples sealed in nuclear magnetic resonance tubes with those from standard dielectric cells, using glycerol and butylmethylimidazolium-hexafluorophosphate as respective examples of a molecular and an ionic liquid. This instrument and approach may prove useful for other studies of permittivity and conductivity where contact to the metal electrodes or to the ambient atmosphere needs to be avoided.

20.
J Chem Phys ; 138(12): 12A549, 2013 Mar 28.
Artigo em Inglês | MEDLINE | ID: mdl-23556800

RESUMO

The ability of some liquids to vitrify during supercooling is usually seen as a consequence of the rates of crystal nucleation (and∕or crystal growth) becoming small [D. R. Uhlmann, J. Non-Cryst. Solids 7, 337 (1972)]--and thus a matter of kinetics. However, there is evidence dating back to the empirics of coal briquetting for maximum trucking efficiency [D. Frenkel, Physics 3, 37 (2010)] that some object shapes find little advantage in self-assembly to ordered structures--meaning random packings prevail. Noting that key studies of non-spherical object packing have never been followed from hard ellipsoids [A. Donev, F. H. Stillinger, P. M. Chaikin, and S. Torquato, Phys. Rev. Lett. 92, 255506 (2004); A. Donev, I. Cisse, D. Sachs, E. A. Variano, F. H. Stillinger, R. Connelly, S. Torquato, and P. M. Chaikin, Science 303, 990 (2004)] or spherocylinders [S. R. Williams and A. P. Philipse, Phys. Rev. E 67, 051301 (2003)] (diatomics excepted [S.-H. Chong, A. J. Moreno, F. Sciortino, and W. Kob, Phys. Rev. Lett. 94, 215701 (2005)] into the world of molecules with attractive forces, we have made a molecular dynamics study of crystal melting and glass formation on the Gay-Berne (G-B) model of ellipsoidal objects [J. G. Gay and B. J. Berne, J. Chem. Phys. 74, 3316 (1981)] across the aspect ratio range of the hard ellipsoid studies. Here, we report that in the aspect ratio range of maximum ellipsoid packing efficiency, various G-B crystalline states that cannot be obtained directly from the liquid, disorder spontaneously near 0 K and transform to liquids without any detectable enthalpy of fusion. Without claiming to have proved the existence of single component examples, we use the present observations, together with our knowledge of non-ideal mixing effects, to discuss the probable existence of "ideal glassformers"--single or multicomponent liquids that vitrify before ever becoming metastable with respect to crystals. We find evidence that "ideal glassformer" systems might also be highly fragile systems, approaching the "ideal glass" condition. We link this to the high "volume fragility" behavior observed in recent hard dumbbell studies at similar length∕diameter ratios [R. Zhang and K. S. Schweitzer, J. Chem. Phys. 133, 104902 (2010)]. The discussion suggests some unusual systems for laboratory study. Using differential scanning calorimetry detection of fusion points T(m), liquidus temperatures T(l), and glass transition temperatures T(g), we describe a system that would seem incapable of crystallizing before glass transition, i.e., an "ideal glassformer." The existence of crystal-free routes to the glassy state will eliminate precrystalline fluctuations as a source of the dynamic heterogeneities that are generally considered important in the discussion of the "glassy state problem [P. W. Anderson, Science 267, 1615 (1995)]."


Assuntos
Simulação de Dinâmica Molecular , Calorimetria , Vidro/química , Cinética
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA