Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
J Immunol ; 207(2): 555-568, 2021 07 15.
Artigo em Inglês | MEDLINE | ID: mdl-34233910

RESUMO

As key cells of the immune system, macrophages coordinate the activation and regulation of the immune response. Macrophages present a complex phenotype that can vary from homeostatic, proinflammatory, and profibrotic to anti-inflammatory phenotypes. The factors that drive the differentiation from monocyte to macrophage largely define the resultant phenotype, as has been shown by the differences found in M-CSF- and GM-CSF-derived macrophages. We explored alternative inflammatory mediators that could be used for in vitro differentiation of human monocytes into macrophages. IFN-γ is a potent inflammatory mediator produced by lymphocytes in disease and infections. We used IFN-γ to differentiate human monocytes into macrophages and characterized the cells at a functional and proteomic level. IFN-γ alone was sufficient to generate macrophages (IFN-γ Mϕ) that were phagocytic and responsive to polarization. We demonstrate that IFN-γ Mϕ are potent activators of T lymphocytes that produce IL-17 and IFN-γ. We identified potential markers (GBP-1, IP-10, IL-12p70, and IL-23) of IFN-γ Mϕ and demonstrate that these markers are enriched in the skin of patients with inflamed psoriasis. Collectively, we show that IFN-γ can drive human monocyte to macrophage differentiation, leading to bona fide macrophages with inflammatory characteristics.


Assuntos
Diferenciação Celular/fisiologia , Inflamação/metabolismo , Interferon gama/metabolismo , Macrófagos/metabolismo , Monócitos/metabolismo , Psoríase/metabolismo , Biomarcadores/metabolismo , Células Cultivadas , Humanos , Fator Estimulador de Colônias de Macrófagos/metabolismo , Fenótipo , Proteômica/métodos , Pele/metabolismo
2.
Bioorg Med Chem Lett ; 21(4): 1126-33, 2011 Feb 15.
Artigo em Inglês | MEDLINE | ID: mdl-21257309

RESUMO

A novel series of indazole non-steroidal glucocorticoid receptor agonist has been discovered. This series features a sulfonamide central core and meta amides which interact with the extended ligand binding domain. This series has produced some of the most potent and least lipophilic agonists of which we are aware such as 20a (NFκB pIC(50) 8.3 (100%), clogP 1.9). Certain analogues in this series also display evidence for modulated pharmacology.


Assuntos
Indazóis/química , Receptores de Glucocorticoides/agonistas , Sulfonamidas/síntese química , Sítios de Ligação , Linhagem Celular Tumoral , Simulação por Computador , Avaliação Pré-Clínica de Medicamentos , Humanos , Interações Hidrofóbicas e Hidrofílicas , Indazóis/síntese química , Indazóis/farmacologia , Receptores de Glucocorticoides/metabolismo , Relação Estrutura-Atividade , Sulfonamidas/farmacologia
3.
J Med Chem ; 53(11): 4531-44, 2010 Jun 10.
Artigo em Inglês | MEDLINE | ID: mdl-20469868

RESUMO

Glucocorticoid receptor (GR) agonists have been used for more than half a century as the most effective treatment of acute and chronic inflammatory conditions despite serious side effects that accompany their extended use that include glucose intolerance, muscle wasting, skin thinning, and osteoporosis. As a starting point for the identification of GR ligands with an improved therapeutic index, we wished to discover selective nonsteroidal GR agonists and antagonists with simplified structure compared to known GR ligands to serve as starting points for the optimization of dissociated GR modulators. To do so, we selected multiple chemical series by structure guided docking studies and evaluated GR agonist activity. From these efforts we identified 5-arylindazole compounds that showed moderate binding to the glucocorticoid receptor (GR) with clear opportunities for further development. Structure guided optimization was used to design arrays that led to potent GR agonists and antagonists. Several in vitro and in vivo experiments were utilized to demonstrate that GR agonist 23a (GSK9027) had a profile similar to that of a classical steroidal GR agonist.


Assuntos
Desenho de Fármacos , Indazóis/química , Indazóis/farmacologia , Receptores de Glucocorticoides/agonistas , Receptores de Glucocorticoides/antagonistas & inibidores , Animais , Relação Dose-Resposta a Droga , Fibroblastos/efeitos dos fármacos , Fibroblastos/metabolismo , Humanos , Indazóis/síntese química , Indazóis/farmacocinética , Masculino , Camundongos , Modelos Moleculares , NF-kappa B/metabolismo , Conformação Proteica , Ratos , Receptores de Glucocorticoides/química , Receptores de Glucocorticoides/metabolismo , Especificidade por Substrato
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...