Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 12 de 12
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
J Physiol ; 591(7): 1841-50, 2013 Apr 01.
Artigo em Inglês | MEDLINE | ID: mdl-23318869

RESUMO

GABAergic granule cells (GCs) regulate, via mitral cells, the final output from the olfactory bulb to piriform cortex and are central for the speed and accuracy of odour discrimination. However, little is known about the local circuits in which GCs are embedded and how GCs respond during functional network activity. We recorded inhibitory and excitatory currents evoked during a single sniff-like odour presentation in GCs in vivo. We found that synaptic excitation was extensively activated across cells, whereas phasic inhibition was rare. Furthermore, our analysis indicates that GCs are innervated by a persistent firing of deep short axon cells that mediated the inhibitory evoked responses. Blockade of GABAergic synaptic input onto GCs revealed a tonic inhibitory current mediated by furosemide-sensitive GABA(A) receptors. The average current associated with this tonic GABAergic conductance was 3-fold larger than that of phasic inhibitory postsynaptic currents. We show that the pharmacological blockage of tonic inhibition markedly increased the occurrence of supra-threshold responses during an odour-stimulated sniff. Our findings suggest that GCs mediate recurrent or lateral inhibition, depending on the ambient level of extracellular GABA.


Assuntos
Inibição Neural/fisiologia , Neurônios/fisiologia , Bulbo Olfatório/fisiologia , Animais , Feminino , Potenciais Pós-Sinápticos Inibidores , Camundongos , Camundongos Endogâmicos C57BL , Odorantes , Bulbo Olfatório/citologia
2.
Artigo em Inglês | MEDLINE | ID: mdl-23060786

RESUMO

A key player in olfactory processing is the olfactory bulb (OB) mitral cell (MC). We have used dual whole-cell patch-clamp recordings from the apical dendrite and cell soma of MCs to develop a passive compartmental model based on detailed morphological reconstructions of the same cells. Matching the model to traces recorded in experiments we find: C(m) = 1.91 ± 0.20 µF cm(-2), R(m) = 3547 ± 1934 Ω cm(2) and R(i) = 173 ± 99 Ω cm. We have constructed a six MC gap-junction (GJ) network model of morphologically accurate MCs. These passive parameters (PPs) were then incorporated into the model with Na(+), Kdr, and KA conductances and GJs from Migliore et al. (2005). The GJs were placed in the apical dendrite tuft (ADT) and their conductance adjusted to give a coupling ratio between MCs consistent with experimental findings (~0.04). Firing at ~50 Hz was induced in all six MCs with continuous current injections (0.05-0.07 nA) at 20 locations to the ADT of two of the MCs. It was found that MCs in the network synchronized better when they shared identical PPs rather than using their own PPs for the fit suggesting that the OB may have populations of MCs tuned for synchrony. The addition of calcium-activated potassium channels (iKCa) and L-type calcium channels (iCa(L)) (Bhalla and Bower, 1993) to the model enabled MCs to generate burst firing. However, the GJ coupling was no longer sufficient to synchronize firing. When cells were stimulated by a continuous current injection there was an initial period of asynchronous burst firing followed after ~120 ms by synchronous repetitive firing. This occurred as intracellular calcium fell due to reduced iCa(L) activity. The kinetics of one of the iCa(L) gate variables, which had a long activation time constant (τ ~ range 18-150 ms), was responsible for this fall in iCa(L). The model makes predictions about the nature of the kinetics of the calcium current that will need experimental verification.

3.
Nature ; 488(7411): 375-8, 2012 Aug 16.
Artigo em Inglês | MEDLINE | ID: mdl-22820253

RESUMO

One defining characteristic of the mammalian brain is its neuronal diversity. For a given region, substructure, layer or even cell type, variability in neuronal morphology and connectivity persists. Although it is well known that such cellular properties vary considerably according to neuronal type, the substantial biophysical diversity of neurons of the same morphological class is typically averaged out and ignored. Here we show that the amplitude of hyperpolarization-evoked sag of membrane potential recorded in olfactory bulb mitral cells is an emergent, homotypic property of local networks and sensory information processing. Simultaneous whole-cell recordings from pairs of cells show that the amount of hyperpolarization-evoked sag potential and current (Ih) is stereotypic for mitral cells belonging to the same glomerular circuit. This is corroborated by a mosaic, glomerulus-based pattern of expression of the HCN2 (hyperpolarization-activated cyclic nucleotide-gated channel 2) subunit of the Ih channel. Furthermore, inter-glomerular differences in both membrane potential sag and HCN2 protein are diminished when sensory input to glomeruli is genetically and globally altered so that only one type of odorant receptor is universally expressed. Population diversity in this intrinsic property therefore reflects differential expression between local mitral cell networks processing distinct odour-related information.


Assuntos
Rede Nervosa/fisiologia , Bulbo Olfatório/citologia , Bulbo Olfatório/fisiologia , Olfato/fisiologia , Animais , Feminino , Perfilação da Expressão Gênica , Canais Disparados por Nucleotídeos Cíclicos Ativados por Hiperpolarização , Canais Iônicos/metabolismo , Masculino , Camundongos , Camundongos Endogâmicos C57BL , Camundongos Transgênicos , Modelos Neurológicos , Canais de Potássio , Receptores Odorantes/metabolismo
4.
Sci Rep ; 1: 50, 2011.
Artigo em Inglês | MEDLINE | ID: mdl-22355569

RESUMO

Although neurons are known to exhibit a broad array of intrinsic properties that impact critically on the computations they perform, very few studies have quantified such biophysical diversity and its functional consequences. Using in vivo and in vitro whole-cell recordings here we show that mitral cells are extremely heterogeneous in their expression of a rebound depolarization (sag) at hyperpolarized potentials that is mediated by a ZD7288-sensitive current with properties typical of hyperpolarization-activated cyclic nucleotide gated (HCN) channels. The variability in sag expression reflects a functionally diverse population of mitral cells. For example, those cells with large amplitude sag exhibit more membrane noise, a lower rheobase and fire action potentials more regularly than cells where sag is absent. Thus, cell-to-cell variability in sag potential amplitude reflects diversity in the integrative properties of mitral cells that ensures a broad dynamic range for odor representation across these principal neurons.


Assuntos
Potenciais de Ação/fisiologia , Potenciais da Membrana/fisiologia , Rede Nervosa/fisiologia , Bulbo Olfatório/fisiologia , Neurônios Receptores Olfatórios/fisiologia , Olfato/fisiologia , Animais , Células Cultivadas , Células HEK293 , Humanos , Camundongos
5.
J Neurosci ; 27(32): 8643-53, 2007 Aug 08.
Artigo em Inglês | MEDLINE | ID: mdl-17687042

RESUMO

The hyperpolarization-activated cation current I(h) exhibits a steep gradient of channel density in dendrites of pyramidal neurons, which is associated with location independence of temporal summation of EPSPs at the soma. In striking contrast, here we show by using dendritic patch-clamp recordings that in cerebellar Purkinje cells, the principal neurons of the cerebellar cortex, I(h) exhibits a uniform dendritic density, while location independence of EPSP summation is observed. Using compartmental modeling in realistic and simplified dendritic geometries, we demonstrate that the dendritic distribution of I(h) only weakly affects the degree of temporal summation at the soma, while having an impact at the dendritic input location. We further analyze the effect of I(h) on temporal summation using cable theory and derive bounds for temporal summation for any spatial distribution of I(h). We show that the total number of I(h) channels, not their distribution, governs the degree of temporal summation of EPSPs. Our findings explain the effect of I(h) on EPSP shape and temporal summation, and suggest that neurons are provided with two independent degrees of freedom for different functions: the total amount of I(h) (controlling the degree of temporal summation of dendritic inputs at the soma) and the dendritic spatial distribution of I(h) (regulating local dendritic processing).


Assuntos
Dendritos/fisiologia , Canais de Potássio/fisiologia , Animais , Animais Recém-Nascidos , Canais de Cátion Regulados por Nucleotídeos Cíclicos , Dendritos/química , Potenciais Pós-Sinápticos Excitadores/fisiologia , Canais Disparados por Nucleotídeos Cíclicos Ativados por Hiperpolarização , Neurônios/química , Neurônios/fisiologia , Canais de Potássio/análise , Ratos , Ratos Sprague-Dawley
6.
PLoS Biol ; 4(6): e163, 2006 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-16689623

RESUMO

Although oscillations in membrane potential are a prominent feature of sensory, motor, and cognitive function, their precise role in signal processing remains elusive. Here we show, using a combination of in vivo, in vitro, and theoretical approaches, that both synaptically and intrinsically generated membrane potential oscillations dramatically improve action potential (AP) precision by removing the membrane potential variance associated with jitter-accumulating trains of APs. This increased AP precision occurred irrespective of cell type and--at oscillation frequencies ranging from 3 to 65 Hz--permitted accurate discernment of up to 1,000 different stimuli. At low oscillation frequencies, stimulus discrimination showed a clear phase dependence whereby inputs arriving during the trough and the early rising phase of an oscillation cycle were most robustly discriminated. Thus, by ensuring AP precision, membrane potential oscillations dramatically enhance the discriminatory capabilities of individual neurons and networks of cells and provide one attractive explanation for their abundance in neurophysiological systems.


Assuntos
Potenciais de Ação/fisiologia , Neurônios/fisiologia , Animais , Eletrofisiologia , Potenciais Evocados , Feminino , Masculino , Camundongos , Bulbo Olfatório/citologia , Reconhecimento Fisiológico de Modelo
7.
Biochem Biophys Res Commun ; 341(4): 979-88, 2006 Mar 24.
Artigo em Inglês | MEDLINE | ID: mdl-16476578

RESUMO

The corticosteroid hormone induced factor (CHIF) is a member of the one-transmembrane segment protein family named FXYD, which also counts phospholemman and the Na,K-pump gamma-subunit. Originally it was suggested that CHIF could induce the expression of the I(Ks) current when expressed in Xenopus laevis oocytes, but recently CHIF has attracted attention as a modulatory subunit of the Na,K-pump. In renal and intestinal epithelia, the expression of CHIF is dramatically up-regulated in response to aldosterone stimulation, and regulation of epithelial ion channels by CHIF is an attractive hypothesis. To study a potential regulatory effect of the CHIF subunit on KCNQ1 channels, co-expression experiments were performed in Xenopus laevis oocytes and mammalian CHO-K1 cells. Electrophysiological characterization was obtained by two-electrode voltage-clamp and patch-clamp, respectively. In both expression systems, we find that CHIF drastically modulates the KCNQ1 current; in the presence of CHIF, the KCNQ1 channels open at all membrane potentials. Thereby, CHIF is the first accessory subunit shown to be capable of modulating both the Na,K-pump and an ion channel. To find a possible physiological function of the constitutively open KCNQ1/CHIF complex, the precise localization of KCNQ1 and CHIF in distal colon and kidney from control and salt-depleted rats was determined by confocal microscopy. However, in these tissues, we did not detect an obvious overlap in expression between KCNQ1 and CHIF. In conclusion, the hormone-regulated subunit CHIF modulates the voltage sensitivity of the KCNQ channels, but so far evidence for an actual co-localization of CHIF and KCNQ1 channels in native tissue is lacking.


Assuntos
Canal de Potássio KCNQ1/efeitos dos fármacos , Canal de Potássio KCNQ1/fisiologia , Proteínas de Membrana/fisiologia , Aldosterona/farmacologia , Animais , Antracenos/farmacologia , Células CHO , Colo/metabolismo , Cricetinae , Cricetulus , Rim/metabolismo , Masculino , Potenciais da Membrana/efeitos dos fármacos , Proteínas de Membrana/biossíntese , Microscopia Confocal , Oócitos , Canais de Potássio de Abertura Dependente da Tensão da Membrana/fisiologia , Ratos , Xenopus laevis
8.
J Cell Sci ; 117(Pt 19): 4517-26, 2004 Sep 01.
Artigo em Inglês | MEDLINE | ID: mdl-15316073

RESUMO

KCNQ1 potassium channels are expressed in many epithelial tissues as well as in the heart. In epithelia KCNQ1 channels play an important role in salt and water transport and the channel has been reported to be located apically in some cell types and basolaterally in others. Here we show that KCNQ1 channels are located basolaterally when expressed in polarised MDCK cells. The basolateral localisation of KCNQ1 is not affected by co-expression of any of the five KCNE beta-subunits. We characterise two independent basolateral sorting signals present in the N-terminal tail of KCNQ1. Mutation of the tyrosine residue at position 51 resulted in a non-polarized steady-state distribution of the channel. The importance of tyrosine 51 in basolateral localisation was emphasized by the fact that a short peptide comprising this tyrosine was able to redirect the p75 neurotrophin receptor, an otherwise apically located protein, to the basolateral plasma membrane. Furthermore, a di-leucine-like motif at residues 38-40 (LEL) was found to affect the basolateral localisation of KCNQ1. Mutation of these two leucines resulted in a primarily intracellular localisation of the channel.


Assuntos
Membrana Celular/metabolismo , Polaridade Celular/fisiologia , Canais de Potássio de Abertura Dependente da Tensão da Membrana/metabolismo , Motivos de Aminoácidos/genética , Motivos de Aminoácidos/fisiologia , Sequência de Aminoácidos , Animais , Células Cultivadas , Cães , Eletrofisiologia/métodos , Canais de Potássio KCNQ , Canal de Potássio KCNQ1 , Dados de Sequência Molecular , Mutação/genética , Oócitos/metabolismo , Canais de Potássio de Abertura Dependente da Tensão da Membrana/genética , Receptor de Fator de Crescimento Neural , Receptores de Fator de Crescimento Neural/metabolismo , Tirosina/metabolismo , Xenopus/metabolismo
9.
Pflugers Arch ; 447(1): 55-63, 2003 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-12905030

RESUMO

The wild-type scorpion toxin BeKm-1, which selectively blocks human ether-a-go-go related (hERG) channels, was radiolabeled with iodine at tyrosine 11. Both the mono- and di-iodinated derivatives were found to be biologically active. In electrophysiological patch-clamp recordings mono-[127I]-BeKm-1 had a concentration of half-maximal inhibition (IC50 value) of 27 nM, while wild-type BeKm-1 inhibited hERG channels with an IC50 value of 7 nM. Mono-[125I]-BeKm-1 was found to bind in a concentration-dependent manner and with picomolar affinity to hERG channel protein in purified membrane vesicles from transfected human embryonic kidney cells (HEK-293). Under optimized conditions the equilibrium dissociation constant ( Kd) values from saturation and kinetic binding analysis were 13 and 14 pM, respectively. Both the association and dissociation of [(125)I]-BeKm-1 were fast (association rate constant, k(on)=3.6 x 10(7) M(-1)s(-1); dissociation rate constant, k(off)=0.005 s(-1)). Wild-type BeKm-1 displaced binding of [125I]-BeKm-1 with half-maximal inhibitory concentrations of 44 pM. In contrast, competition experiments with a BeKm-1 mutant BeKm-1-K18A, in which the toxin interaction site is disrupted, resulted in a drop in affinity by more than 300-fold as compared to the wild-type toxin. Iberiotoxin and apamin, peptide inhibitors of Ca2+-activated K+-channels, had no effect on [125I]-BeKm-1 binding. Adding the classical rapid delayed rectifier current (IKr) blocker E-4031 reduced binding of [125I]-BeKm-1 to the hERG channel to an IC50 of 7 nM. In autoradiographic studies on rat hearts, binding of [125I]-BeKm-1 was dose-dependent and could partially be displaced by the addition of excess amounts of non-radioactive BeKm-1. The density of the radioactive signal was equally distributed in the myocardium of both the ventricle and atria indicating a homogenous expression of hERG channels throughout the heart.


Assuntos
Peptídeos/metabolismo , Bloqueadores dos Canais de Potássio/metabolismo , Canais de Potássio de Abertura Dependente da Tensão da Membrana , Canais de Potássio/metabolismo , Venenos de Escorpião/metabolismo , Animais , Linhagem Celular , Relação Dose-Resposta a Droga , Canal de Potássio ERG1 , Canais de Potássio Éter-A-Go-Go , Humanos , Radioisótopos do Iodo/metabolismo , Ligantes , Masculino , Ligação Proteica/fisiologia , Ratos
10.
J Neurosci Methods ; 121(2): 211-9, 2002 Dec 15.
Artigo em Inglês | MEDLINE | ID: mdl-12468010

RESUMO

Controlled expression of proteins is a key experimental approach to a deeper understanding of the molecular basis of neuronal function. Here we evaluate the HSV-1 (herpes simplex virus) amplicon vector for gene delivery into the brains of living rats. We demonstrate that HSV-1 amplicon vectors expressing enhanced green fluorescent protein (EGFP) can reliably infect neurons after it is injected into cortex, striatum and thalamus in rats, producing sufficient numbers of infected neurons for electrophysiological experiments in acute brain slices. Expression of EGFP delivered by the HSV-1 amplicon was detected for up to 5 weeks post-infection. We detected no changes in the morphology or the electrophysiological properties of thalamic, striatal or cortical neurons within a period of at least 2 weeks after HSV-1 amplicon injection. We conclude that the HSV-1 amplicon is a valuable tool for gene delivery in the rat central nervous system.


Assuntos
Sistema Nervoso Central/metabolismo , Técnicas de Transferência de Genes , Vetores Genéticos , Herpesvirus Humano 1/genética , Animais , Células Cultivadas , Sistema Nervoso Central/citologia , Sistema Nervoso Central/virologia , Amplificação de Genes , Proteínas de Fluorescência Verde , Imuno-Histoquímica , Técnicas In Vitro , Proteínas Luminescentes/genética , Proteínas Luminescentes/metabolismo , Potenciais da Membrana/fisiologia , Técnicas de Patch-Clamp/métodos , Ratos , Ratos Sprague-Dawley , Transdução Genética
11.
Biophys J ; 83(4): 1997-2006, 2002 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-12324418

RESUMO

The function of the KCNE5 (KCNE1-like) protein has not previously been described. Here we show that KCNE5 induces both a time- and voltage-dependent modulation of the KCNQ1 current. Interaction of the KCNQ1 channel with KCNE5 shifted the voltage activation curve of KCNQ1 by more than 140 mV in the positive direction. The activation threshold of the KCNQ1+KCNE5 complex was +40 mV and the midpoint of activation was +116 mV. The KCNQ1+KCNE5 current activated slowly and deactivated rapidly as compared to the KCNQ1+KCNE1 at 22 degrees C; however, at physiological temperature, the activation time constant of the KCNQ1+KCNE5 current decreased fivefold, thus exceeding the activation rate of the KCNQ1+KCNE1 current. The KCNE5 subunit is specific for the KCNQ1 channel, as none of other members of the KCNQ-family or the human ether a-go-go related channel (hERG1) was affected by KCNE5. Four residues in the transmembrane domain of the KCNE5 protein were found to be important for the control of the voltage-dependent activation of the KCNQ1 current. We speculate that since KCNE5 is expressed in cardiac tissue it may here along with the KCNE1 beta-subunit regulate KCNQ1 channels. It is possible that KCNE5 shapes the I(Ks) current in certain parts of the mammalian heart.


Assuntos
Canais de Potássio de Abertura Dependente da Tensão da Membrana , Canais de Potássio/química , Potenciais de Ação , Sequência de Aminoácidos , Animais , Fenômenos Biofísicos , Biofísica , Células CHO , Cricetinae , Eletrofisiologia , Íons , Canais de Potássio KCNQ , Canal de Potássio KCNQ1 , Cinética , Dados de Sequência Molecular , Canais de Potássio/metabolismo , Estrutura Terciária de Proteína , Temperatura , Fatores de Tempo , Xenopus laevis
12.
J Biol Chem ; 277(45): 43104-9, 2002 Nov 08.
Artigo em Inglês | MEDLINE | ID: mdl-12151390

RESUMO

The scorpion toxin BeKm-1 is unique among a variety of known short scorpion toxins affecting potassium channels in its selective action on ether-a-go-go-related gene (ERG)-type channels. BeKm-1 shares the common molecular scaffold with other short scorpion toxins. The toxin spatial structure resolved by NMR consists of a short alpha-helix and a triple-stranded antiparallel beta-sheet. By toxin mutagenesis study we identified the residues that are important for the binding of BeKm-1 to the human ERG K+ (HERG) channel. The most critical residues (Tyr-11, Lys-18, Arg-20, Lys-23) are located in the alpha-helix and following loop whereas the "traditional" functional site of other short scorpion toxins is formed by residues from the beta-sheet. Thus the unique location of the binding site of BeKm-1 provides its specificity toward the HERG channel.


Assuntos
Proteínas de Transporte de Cátions , Proteínas de Ligação a DNA , Canais de Potássio de Abertura Dependente da Tensão da Membrana , Canais de Potássio/metabolismo , Venenos de Escorpião/química , Transativadores , Sequência de Aminoácidos , Sítios de Ligação , Canal de Potássio ERG1 , Canais de Potássio Éter-A-Go-Go , Humanos , Modelos Moleculares , Dados de Sequência Molecular , Plasmídeos , Canais de Potássio/química , Conformação Proteica , Estrutura Secundária de Proteína , Subunidades Proteicas/química , Proteínas Recombinantes/química , Proteínas Recombinantes/toxicidade , Venenos de Escorpião/genética , Venenos de Escorpião/toxicidade , Alinhamento de Sequência , Homologia de Sequência de Aminoácidos , Soluções , Especificidade por Substrato , Regulador Transcricional ERG
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...