Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Mais filtros










Intervalo de ano de publicação
1.
Sci Rep ; 14(1): 4508, 2024 02 24.
Artigo em Inglês | MEDLINE | ID: mdl-38402312

RESUMO

Cas12a is a promising addition to the CRISPR toolbox, offering versatility due to its TTTV-protospacer adjacent motif (PAM) and the fact that it induces double-stranded breaks (DSBs) with single-stranded overhangs. We characterized Cas12a-mediated genome editing in tomato using high-throughput amplicon sequencing on protoplasts. Of the three tested variants, Lachnospiraceae (Lb) Cas12a was the most efficient. Additionally, we developed an easy and effective Golden-Gate-based system for crRNA cloning. We compared LbCas12a to SpCas9 by investigating on-target efficacy and specificity at 35 overlapping target sites and 57 (LbCas12a) or 100 (SpCas9) predicted off-target sites. We found LbCas12a an efficient, robust addition to SpCas9, with similar overall though target-dependent efficiencies. LbCas12a induced more and larger deletions than SpCas9, which can be advantageous for specific genome editing applications. Off-target activity for LbCas12a was found at 10 out of 57 investigated sites. One or two mismatches were present distal from the PAM in all cases. We conclude that Cas12a-mediated genome editing is generally precise as long as such off-target sites can be avoided. In conclusion, we have determined the mutation pattern and efficacy of Cas12a-mediated CRISPR mutagenesis in tomato and developed a cloning system for the routine application of Cas12a for tomato genome editing.


Assuntos
Sistemas CRISPR-Cas , Solanum lycopersicum , Solanum lycopersicum/genética , Mutagênese , Edição de Genes , Mutação
2.
Genet. mol. biol ; 29(2): 401-407, 2006. ilus, tab
Artigo em Inglês | LILACS | ID: lil-432716

RESUMO

Activation tagging is a powerful tool to identify new mutants and to obtain information about possible biological functions of the overexpressed genes. The quadruple cauliflower mosaic virus (CaMV) 35S enhancer fragment is a strong enhancer, which is most commonly used for this purpose. However, the constitutive nature of this enhancer may generate lethal mutations or aberrations in different plant organs by the same overexpressed gene. A tissue-specific activation tagging approach may overcome these drawbacks and may also lead more efficiently to the desired phenotype. For this reason the SHATTERPROOF2 (SHP2) promoter fragment was analysed for enhancer activity. The SHP2 gene is involved in dehiscence zone development and expressed during silique development. The aim of the experiments described here was to identify a dehiscence zone specific enhancer that could be used for tissue-specific activation tagging. The chosen SHP2 enhancer fragment was found to be expressed predominantly in the dehiscence zone and showed enhancer activity as well as ectopic expression activity. This activity was not influenced by its orientation towards the promoter and it was still functional at the largest tested distance of 2.0 kb. Based on these results, the SHP2 enhancer fragment can potentially be used in a tissue-specific activation tagging approach to identify new Arabidopsis mutants with an altered dehiscence zone formation.


Assuntos
Arabidopsis/genética , Fatores de Transcrição , Mutação , Plantas/genética , Proteínas Tirosina Fosfatases
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA