Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 6 de 6
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Phys Rev Lett ; 131(4): 041003, 2023 Jul 28.
Artigo em Inglês | MEDLINE | ID: mdl-37566859

RESUMO

We report on the first search for nuclear recoils from dark matter in the form of weakly interacting massive particles (WIMPs) with the XENONnT experiment, which is based on a two-phase time projection chamber with a sensitive liquid xenon mass of 5.9 ton. During the (1.09±0.03) ton yr exposure used for this search, the intrinsic ^{85}Kr and ^{222}Rn concentrations in the liquid target are reduced to unprecedentedly low levels, giving an electronic recoil background rate of (15.8±1.3) events/ton yr keV in the region of interest. A blind analysis of nuclear recoil events with energies between 3.3 and 60.5 keV finds no significant excess. This leads to a minimum upper limit on the spin-independent WIMP-nucleon cross section of 2.58×10^{-47} cm^{2} for a WIMP mass of 28 GeV/c^{2} at 90% confidence level. Limits for spin-dependent interactions are also provided. Both the limit and the sensitivity for the full range of WIMP masses analyzed here improve on previous results obtained with the XENON1T experiment for the same exposure.

2.
Phys Rev Lett ; 130(26): 261002, 2023 Jun 30.
Artigo em Inglês | MEDLINE | ID: mdl-37450817

RESUMO

Multiple viable theoretical models predict heavy dark matter particles with a mass close to the Planck mass, a range relatively unexplored by current experimental measurements. We use 219.4 days of data collected with the XENON1T experiment to conduct a blind search for signals from multiply interacting massive particles (MIMPs). Their unique track signature allows a targeted analysis with only 0.05 expected background events from muons. Following unblinding, we observe no signal candidate events. This Letter places strong constraints on spin-independent interactions of dark matter particles with a mass between 1×10^{12} and 2×10^{17} GeV/c^{2}. In addition, we present the first exclusion limits on spin-dependent MIMP-neutron and MIMP-proton cross sections for dark matter particles with masses close to the Planck scale.

3.
Phys Rev Lett ; 129(16): 161805, 2022 Oct 14.
Artigo em Inglês | MEDLINE | ID: mdl-36306777

RESUMO

We report on a blinded analysis of low-energy electronic recoil data from the first science run of the XENONnT dark matter experiment. Novel subsystems and the increased 5.9 ton liquid xenon target reduced the background in the (1, 30) keV search region to (15.8±1.3) events/(ton×year×keV), the lowest ever achieved in a dark matter detector and ∼5 times lower than in XENON1T. With an exposure of 1.16 ton-years, we observe no excess above background and set stringent new limits on solar axions, an enhanced neutrino magnetic moment, and bosonic dark matter.

4.
Eur Phys J C Part Fields ; 82(7): 599, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-35821975

RESUMO

The selection of low-radioactive construction materials is of the utmost importance for rare-event searches and thus critical to the XENONnT experiment. Results of an extensive radioassay program are reported, in which material samples have been screened with gamma-ray spectroscopy, mass spectrometry, and 222 Rn emanation measurements. Furthermore, the cleanliness procedures applied to remove or mitigate surface contamination of detector materials are described. Screening results, used as inputs for a XENONnT Monte Carlo simulation, predict a reduction of materials background ( ∼ 17%) with respect to its predecessor XENON1T. Through radon emanation measurements, the expected 222 Rn activity concentration in XENONnT is determined to be 4.2 ( - 0.7 + 0.5 )  µ Bq/kg, a factor three lower with respect to XENON1T. This radon concentration will be further suppressed by means of the novel radon distillation system.

5.
Eur Phys J C Part Fields ; 81(4): 337, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-34720714

RESUMO

The selection of low-radioactive construction materials is of utmost importance for the success of low-energy rare event search experiments. Besides radioactive contaminants in the bulk, the emanation of radioactive radon atoms from material surfaces attains increasing relevance in the effort to further reduce the background of such experiments. In this work, we present the 222 Rn emanation measurements performed for the XENON1T dark matter experiment. Together with the bulk impurity screening campaign, the results enabled us to select the radio-purest construction materials, targeting a 222 Rn activity concentration of 10 µ Bq / kg in 3.2 t of xenon. The knowledge of the distribution of the 222 Rn sources allowed us to selectively eliminate problematic components in the course of the experiment. The predictions from the emanation measurements were compared to data of the 222 Rn activity concentration in XENON1T. The final 222 Rn activity concentration of ( 4.5 ± 0.1 ) µ Bq / kg in the target of XENON1T is the lowest ever achieved in a xenon dark matter experiment.

6.
Phys Rev Lett ; 126(9): 091301, 2021 Mar 05.
Artigo em Inglês | MEDLINE | ID: mdl-33750173

RESUMO

We report on a search for nuclear recoil signals from solar ^{8}B neutrinos elastically scattering off xenon nuclei in XENON1T data, lowering the energy threshold from 2.6 to 1.6 keV. We develop a variety of novel techniques to limit the resulting increase in backgrounds near the threshold. No significant ^{8}B neutrinolike excess is found in an exposure of 0.6 t×y. For the first time, we use the nondetection of solar neutrinos to constrain the light yield from 1-2 keV nuclear recoils in liquid xenon, as well as nonstandard neutrino-quark interactions. Finally, we improve upon world-leading constraints on dark matter-nucleus interactions for dark matter masses between 3 and 11 GeV c^{-2} by as much as an order of magnitude.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...