RESUMO
New computationally driven protocols for the Heck desymmetrization of 3-cyclopenten-1-ol with aryldiazonium tetrafluoroborates were developed. These new conditions furnished remarkable product selectivity originating from a resident hydroxyl group and the critical choice of the reaction solvent. Mechanistic insights gleaned from theoretical calculations of the putative transition states predicted toluene as an adequate solvent choice to attain high enantioselectivity by strengthening the noncovalent interaction of the substrate hydroxyl group and the chiral cationic palladium catalyst. Laboratory experiments validated the theoretical predictions, and by employing 2% MeOH/toluene as solvent, the Heck-Matsuda reaction provided exclusively the cis-4-arylcyclopentenols 3a-l in good to excellent yields in enantiomeric excesses up to 99%. The performance of the new PyOx ligand (S)-4-tert-butyl-2-(3,5-dichloropyridin-2-yl)-4,5-dihydrooxazole was also successfully evaluated in the Heck-Matsuda desymmetrization of 3-cyclopenten-1-ol. The synthetic potential of these highly functionalized cis-4-arylcyclopentenols is illustrated by a gold-catalyzed synthesis of cyclopenta[b]benzofuran skeletons.
RESUMO
The boom in visible light photoredox catalysis (VLPC) research has demonstrated that this novel synthetic approach is here to stay. VLPC enables reactive radical intermediates to be catalytically generated at ambient temperature, a feat not generally allowed through traditional pyrolysis- or radical initiator-based methodologies. VLPC has vastly extended the range of substrates and reaction schemes that have been traditionally the domain of radical reactions. In this review the photophysics background of VLPC will be briefly discussed, followed by a report on recent inroads of VLPC into decarboxylative couplings and radical C-H functionalization of aromatic compounds. The bulk of the review will be dedicated to advances in synergistic catalysis involving VLPC, namely the combination of photoredox catalysis with organocatalysis, including ß-functionalization of carbonyl groups, functionalization of weak aliphatic C-H bonds, and anti-Markovnikov hydrofunctionalization of alkenes; dual catalysis with gold or with nickel, photoredox catalysis as an oxidation promoter in transition metal catalysis, and acid-catalyzed enantioselective radical addition to π systems.
RESUMO
We describe herein a synthetically useful method for the enantioselective intermolecular Heck-Matsuda arylation of acyclic allylic alcohols. Aryldiazonium tetrafluoroborates were applied as arylating agents in the presence of Pd(TFA)2 and a chiral, commercially available, bisoxazoline ligand. The methodology is straightforward, robust, scalable up to a few grams, and of broad scope allowing the synthesis of a range of ß-aryl-carbonyl compounds in good to high enantioselectivities and yields. This new enantioselective Heck-Matsuda arylation allowed the synthesis of ß-aryl-γ-lactones and ß-aryl aldehydes, which play a vital role as key intermediates in the synthesis of the biologically active compounds, such as (R)-baclofen, (R)-rolipram, (S)-curcumene, (S)-dehydrocurcumene, and (S)-tumerone.