Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 8 de 8
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Entropy (Basel) ; 25(5)2023 May 09.
Artigo em Inglês | MEDLINE | ID: mdl-37238528

RESUMO

With the spring-block model proposed by Olami, Feder, and Christensen (OFC), we obtained a time series of synthetic earthquakes with different values of the conservation level (ß), which measures the fraction of the energy that a relaxing block passes to its neighbors. The time series have multifractal characteristics, and we analyzed them with the Chhabra and Jensen method. We calculated the width, symmetry, and curvature parameters for each spectrum. As the value of conservation level increases, the spectra widen, the symmetric parameter increases, and the curvature around the maximum of the spectra decreases. In a long series of synthetic seismicity, we located earthquakes of the greatest magnitude and built overlapping windows before and after them. For the time series in each window, we performed multifractal analysis to obtain multifractal spectra. We also calculated the width, symmetry, and curvature around the maximum of the multifractal spectrum. We followed the evolution of these parameters before and after large earthquakes. We found that the multifractal spectra had greater widths, were less skewed to the left, and were very pointed around the maximum before rather than after large earthquakes. We studied and calculated the same parameters and found the same results in the analysis of the Southern California seismicity catalog. This suggests that there seems to be a process of preparation for a great earthquake and that its dynamics are different from the one that occurs after this mainshock based on the behavior of the parameters mentioned before.

2.
Entropy (Basel) ; 25(5)2023 May 18.
Artigo em Inglês | MEDLINE | ID: mdl-37238571

RESUMO

The Olami, Feder and Christensen (OFC) spring-block model has proven to be a powerful tool for analyzing and comparing synthetic and real earthquakes. This work proposes the possible reproduction of Utsu's law for earthquakes in the OFC model. Based on our previous works, several simulations characterizing real seismic regions were performed. We located the maximum earthquake in these regions and applied Utsu's formulae to identify a possible aftershock area and made comparisons between synthetic and real earthquakes. The research compares several equations to calculate the aftershock area and proposes a new one with the available data. Subsequently, the team performed new simulations and chose a mainshock to analyze the behavior of the surrounding events, so as to identify whether they could be catalogued as aftershocks and relate them to the aftershock area previously determined using the formula proposed. Additionally, the spatial location of those events was considered in order to classify them as aftershocks. Finally, we plot the epicenters of the mainshock, and the possible aftershocks comprised in the calculated area resembling the original work of Utsu. Having analyzed the results, it is likely to say that Utsu's law is reproducible using a spring-block model with a self-organized criticality (SOC) model.

3.
Entropy (Basel) ; 24(4)2022 Mar 22.
Artigo em Inglês | MEDLINE | ID: mdl-35455099

RESUMO

The self-organized critical (SOC) spring-block models are accessible and powerful computational tools for the study of seismic subduction. This work aims to highlight some important findings through an integrative approach of several actual seismic properties, reproduced by using the Olami, Feder, and Christensen (OFC) SOC model and some variations of it. A few interesting updates are also included. These results encompass some properties of the power laws present in the model, such as the Gutenberg-Richter (GR) law, the correlation between the parameters a and b of the linear frequency-magnitude relationship, the stepped plots for cumulative seismicity, and the distribution of the recurrence times of large earthquakes. The spring-block model has been related to other relevant properties of seismic phenomena, such as the fractal distribution of fault sizes, and can be combined with the work of Aki, who established an interesting relationship between the fractal dimension and the b-value of the Gutenberg-Richter relationship. Also included is the work incorporating the idea of asperities, which allowed us to incorporate several inhomogeneous models in the spring-block automaton. Finally, the incorporation of a Ruff-Kanamori-type diagram for synthetic seismicity, which is in reasonable accordance with the original Ruff and Kanamori diagram for real seismicity, is discussed.

4.
Entropy (Basel) ; 22(8)2020 Aug 07.
Artigo em Inglês | MEDLINE | ID: mdl-33286640

RESUMO

In 1980, Ruff and Kanamori (RK) published an article on seismicity and the subduction zones where they reported that the largest characteristic earthquake (Mw) of a subduction zone is correlated with two geophysical quantities: the rate of convergence between the oceanic and continental plates (V) and the age of the corresponding subducting oceanic lithosphere (T). This proposal was synthetized by using an empirical graph (RK-diagram) that includes the variables Mw, V and T. We have recently published an article that reports that there are some common characteristics between real seismicity, sandpaper experiments and a critically self-organized spring-block model. In that paper, among several results we qualitatively recovered a RK-diagram type constructed with equivalent synthetic quantities corresponding to Mw, V and T. In the present paper, we improve that synthetic RK-diagram by means of a simple model relating the elastic ratio γ of a critically self-organized spring-block model with the age of a lithospheric downgoing plate. In addition, we extend the RK-diagram by including some large subduction earthquakes occurred after 1980. Similar behavior to the former RK-diagram is observed and its SOC synthetic counterpart is obtained.

5.
Entropy (Basel) ; 22(11)2020 Oct 28.
Artigo em Inglês | MEDLINE | ID: mdl-33286996

RESUMO

Nowcasting earthquakes, suggested recently as a method to estimate the state of a fault and hence the seismic risk, is based on the concept of natural time. Here, we generalize nowcasting to a prediction method the merits of which are evaluated by means of the receiver operating characteristics. This new prediction method is applied to a simple (toy) model for the waiting (natural) time of the stronger earthquakes, real seismicity, and the Olami-Feder-Christensen earthquake model with interesting results revealing acceptable to excellent or even outstanding performance.

6.
Entropy (Basel) ; 21(6)2019 Jun 11.
Artigo em Inglês | MEDLINE | ID: mdl-33267295

RESUMO

We calculate the multifractal spectra of heartbeat RR-interval time series (tachograms) of healthy subjects and patients with congestive heart failure (CHF). From these time series, we obtained new subseries of 6 h durations when healthy persons and patients were asleep and awake respectively. For each time series and subseries, we worked out the multifractal spectra with the Chhabra and Jensen method and found that their graphs have different shapes for CHF patients and healthy persons. We suggest to measure two parameters: the curvature around the maximum and the symmetry for all these multifractal spectra graphs, because these parameters were different for healthy and CHF subjects. Multifractal spectra of healthy subjects tend to be right skewed especially when the subjects are asleep and the curvature around the maximum is small compared with the curvature around the maximum of the CHF multifractal spectra; that is, the spectra of patients tend to be more pointed around the maximum. In CHF patients, we also have encountered differences in the curvature of the multifractal spectra depending on their respective New York Heart Association (NYHA) index.

7.
Entropy (Basel) ; 20(12)2018 Dec 13.
Artigo em Inglês | MEDLINE | ID: mdl-33266685

RESUMO

By using earthquake catalogs, previous studies have reported evidence that some changes in the spatial and temporal organization of earthquake activity are observed before and after of a main shock. These previous studies have used different approaches for detecting clustering behavior and distance-events density in order to point out the asymmetric behavior of foreshocks and aftershocks. Here, we present a statistical analysis of the seismic activity related to the M w = 8.2 earthquake that occurred on 7 September 2017 in Mexico. First, we calculated the inter-event time and distance between successive events for the period 1 January 1998 until 20 October 2017 in a circular region centered at the epicenter of the M w = 8.2 EQ. Next, we introduced the concept of pseudo-velocity as the ratio between the inter-event distance and inter-event time. A sliding window is considered to estimate some statistical features of the pseudo-velocity sequence before the main shock. Specifically, we applied the multifractal method to detect changes in the spectrum of singularities for the period before the main event on 7 September. Our results point out that the multifractality associated with the pseudo-velocities exhibits noticeable changes in the characteristics of the spectra (more narrower) for approximately three years, from 2013 until 2016, which is preceded and followed by periods with wider spectra. On the other hand, we present an analysis of patterns of seismic quiescence before the M w = 8.2 earthquake based on the Schreider algorithm over a period of 27 years. We report the existence of an important period of seismic quietude, for six to seven years, from 2008 to 2015 approximately, known as the alpha stage, and a beta stage of resumption of seismic activity, with a duration of approximately three years until the occurrence of the great earthquake of magnitude M w = 8.2 . Our results are in general concordance with previous results reported for statistics based on magnitude temporal sequences.

8.
Entropy (Basel) ; 20(12)2018 Dec 18.
Artigo em Inglês | MEDLINE | ID: mdl-33266708

RESUMO

As it is well known both atmospheric and mantle convection are very complex phenomena. The dynamical description of these processes is a very difficult task involving complicated 2-D or 3-D mathematical models. However, a first approximation to these phenomena can be by means of simplified thermodynamic models where the restriction imposed by the laws of thermodynamics play an important role. An example of this approach is the model proposed by Gordon and Zarmi in 1989 to emulate the convective cells of the atmospheric air by using finite-time thermodynamics (FTT). In the present article we use the FTT Gordon-Zarmi model to coarsely describe the convection in the Earth's mantle. Our results permit the existence of two layers of convective cells along the mantle. Besides the model reasonably reproduce the temperatures of the main discontinuities in the mantle, such as the 410 km-discontinuity, the Repetti transition zone and the so-called D-Layer.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...