Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 10 de 10
Filtrar
Mais filtros











Base de dados
Intervalo de ano de publicação
1.
Plant Cell Environ ; 2024 Aug 22.
Artigo em Inglês | MEDLINE | ID: mdl-39169844

RESUMO

Wood serves crucial functions in plants, yet our understanding of the mechanisms governing the composition, arrangement, and dimensions of its cells remains limited. The abrupt transition from nonlianescent to lianescent xylem in lianas represents an excellent model to address the underlying mechanisms, although consistent triggering factors for this process remain uncertain. In this study we examined how physical support attachment impacts the development of lianescent xylem in Bignonia magnifica (Bignoniaceae), employing a comprehensive approach integrating detailed anatomical analysis with gene expression profiling of cambium and differentiating xylem. Our findings demonstrate that attachment to physical supports triggers the formation of lianescent xylem, leading to increased vessel size, broader vessel distribution, reduced fibre content, and higher potential specific water conductivity than nonlianescent xylem. These shifts in wood anatomy coincide with the downregulation of genes associated with cell division and cell wall biosynthesis, and the upregulation of transcription factors, defense/cell death, and hormone-responsive genes in the lianescent xylem. Our findings provide insights into the regulation of xylem differentiation, driven by response to environmental stimuli. Additionally, they shed light on the mechanisms underlying the adaptation of lianas to climbing.

2.
Ann Bot ; 134(2): 337-350, 2024 Jul 09.
Artigo em Inglês | MEDLINE | ID: mdl-38721801

RESUMO

BACKGROUND AND AIMS: Lianas have higher relative abundance and biomass in drier seasonal forests than in rainforests, but whether this difference is associated with their hydraulic strategies is unclear. Here, we investigate whether lianas of seasonally dry forests are safer and more efficient in water transport than rainforest lianas, explaining patterns of liana abundance. METHODS: We measured hydraulic traits on five pairs of congeneric lianas of the tribe Bignonieae in two contrasting forest sites: the wet 'Dense Ombrophilous Forest' in Central Amazonia (~2 dry months) and the drier 'Semideciduous Seasonal Forest' in the inland Atlantic Forest (~6 dry months). We also gathered a broader database, including 197 trees and 58 liana species from different tropical forests, to compare hydraulic safety between habits and forest types. KEY RESULTS: Bignonieae lianas from both forests had high and similar hydraulic efficiency but exhibited variability in resistance to embolism across forest types when phylogenetic relationships were taken into account. Three genera had higher hydraulic safety in the seasonal forest than in the rainforest, but species across both forests had similar positive hydraulic safety margins despite lower predawn water potential values of seasonal forest lianas. We did not find the safety-efficiency trade-off. Merging our results with previously published data revealed a high variability of resistance to embolism in both trees and lianas, independent of forest types. CONCLUSIONS: The high hydraulic efficiency of lianas detected here probably favours their rapid growth across tropical forests, but differences in hydraulic safety highlight that some species are highly vulnerable and may rely on other mechanisms to cope with drought. Future research on the lethal dehydration threshold and the connection between hydraulic resistance strategies and liana abundance could offer further insights into tropical forest dynamics under climatic threats.


Assuntos
Floresta Úmida , Estações do Ano , Clima Tropical , Florestas , Água/fisiologia , Bignoniaceae/fisiologia , Árvores/fisiologia , Brasil
3.
Evodevo ; 13(1): 4, 2022 Jan 29.
Artigo em Inglês | MEDLINE | ID: mdl-35093184

RESUMO

BACKGROUND: Alternative patterns of secondary growth in stems of Nyctaginaceae is present in all growth habits of the family and have been known for a long time. However, the interpretation of types of cambial variants have been controversial, given that different authors have given them different developmental interpretations. The different growth habits coupled with an enormous stem anatomical diversity offers the unique opportunity to investigate the evolution of complex developments, to address how these anatomies shifted within habits, and how the acquisition of novel cambial variants and habit transitions impacted the diversification of the family. METHODS: We integrated developmental data with a phylogenetic framework to investigate the diversity and evolution of stem anatomy in Nyctaginaceae using phylogenetic comparative methods, reconstructing ancestral states, and examining whether anatomical shifts correspond to species diversification rate shifts in the family. RESULTS: Two types of cambial variants, interxylary phloem and successive cambia, were recorded in Nyctaginaceae, which result from four different ontogenies. These ontogenetic trajectories depart from two distinct primary vascular structures (regular or polycyclic eustele) yet, they contain shared developmental stages which generate stem morphologies with deconstructed boundaries of morphological categories (continuum morphology). Unlike our a priori hypotheses, interxylary phloem is reconstructed as the ancestral character for the family, with three ontogenies characterized as successive cambia evolving in few taxa. Cambial variants are not contingent on habits, and their transitions are independent from species diversification. CONCLUSIONS: Our findings suggest that multiple developmental mechanisms, such as heterochrony and heterotopy, generate the transitions between interxylary phloem and successive cambia. Intermediate between these two extremes are present in Nyctaginaceae, suggesting a continuum morphology across the family as a generator of anatomical diversity.

4.
Am J Bot ; 107(12): 1622-1634, 2020 12.
Artigo em Inglês | MEDLINE | ID: mdl-33274437

RESUMO

PREMISE: Lianas are intriguing forest components in the tropics worldwide. They are characterized by thin and flexible stems, which have been related to a unique stem anatomy. Here, we hypothesized that the anatomical diversity of lianas, varying in shapes, proportions, and dimensions of tissues and cell types, would result in different stem bending stiffnesses across species. To test this hypothesis, we chose four abundant liana species of central Amazonia belonging to the monophyletic tribe Bignonieae (Bignoniaceae) and compared their basal stems for their anatomical architectures and bending properties. METHODS: Measurements of anatomical architecture and bending stiffness (structural Young's modulus) included light microscopy observations and three-point bending tests, which were performed on basal stems of eight individuals from four Bignonieae species. All analyses, including comparisons among species and relationships between stem stiffness and anatomical architecture, were performed using linear models. RESULTS: Although the anatomical architecture of each species consists of different qualitative and quantitative combinations of both tissues and cell types in basal stems, all species analyzed showed similarly lower bending stiffnesses. This similarity was shown to be directly related to high bark contribution to the second moment of area, vessel area and ray width. CONCLUSIONS: Similar values of stem bending stiffness were encountered in four liana species analyzed despite their variable anatomical architectures. This pattern provides new evidence of how different quantitative combinations of tissue and cell types in the basal stems of lianas can generate similarly low levels of stiffness in a group of closely related species.


Assuntos
Bignoniaceae , Caules de Planta
5.
Am J Bot ; 107(5): 707-725, 2020 05.
Artigo em Inglês | MEDLINE | ID: mdl-32432350

RESUMO

PREMISE: Medullary bundles, i.e., vascular units in the pith, have evolved multiple times in vascular plants. However, no study has ever explored their anatomical diversity and evolution within a phylogenetic framework. Here, we investigated the development of the primary vascular system within Nyctaginaceae showing how medullary bundles diversified within the family. METHODS: Development of 62 species from 25 of the 31 genera of Nyctaginaceae in stem samples was thoroughly studied with light microscopy and micro-computed tomography. Ancestral states were reconstructed using a maximum likelihood approach. RESULTS: Two subtypes of eusteles were found, the regular eustele, lacking medullary bundles, observed exclusively in representatives of Leucastereae, and the polycyclic eustele, containing medullary bundles, found in all the remaining taxa. Medullary bundles had the same origin and development, but the organization was variable and independent of phyllotaxy. Within the polycyclic eustele, medullary bundles developed first, followed by the formation of a continuous concentric procambium, which forms a ring of vascular bundles enclosing the initially formed medullary bundles. The regular eustele emerged as a synapomorphy of Leucastereae, while the medullary bundles were shown to be a symplesiomorphy for Nyctaginaceae. CONCLUSIONS: Medullary bundles in Nyctaginaceae developed by a single shared pathway, that involved the departure of vascular traces from lateral organs toward the pith. These medullary bundles were encircled by a continuous concentric procambium that also constituted the polycyclic eustele, which was likely a symplesiomorphy for Nyctaginaceae with one single reversion to the regular eustele.


Assuntos
Nyctaginaceae , Evolução Biológica , Funções Verossimilhança , Filogenia , Microtomografia por Raio-X
6.
Am J Bot ; 106(9): 1156-1172, 2019 09.
Artigo em Inglês | MEDLINE | ID: mdl-31517989

RESUMO

PREMISE: Laticifers have evolved multiple times in angiosperms and have been interpreted as a key innovation involved in plant defense mechanisms. In Malpighiaceae, laticifers were previously known from a single lineage of trees and shrubs, the Galphimia clade, but with detailed anatomical analyses here, we show that their distribution is broader in the family, also encompassing large clades of lianas. METHODS: From 15 genera, 70 species of Malpighiaceae were surveyed through careful anatomical ontogenetic analysis of roots, stems, and leaves and detailed histochemical tests to elucidate the nature of laticifers and latex in the family. RESULTS: Articulated anastomosing laticifers were encountered in roots, stems, and leaves of two distantly related megadiverse genera of Malpighiaceae lianas: Stigmaphyllon (stigmaphylloid clade) and Tetrapterys s.s. (tetrapteroid clade). From the apex downward, in Stigmaphyllon the laticifers are derived from the procambium and from the cambium during its early activity and are present in the outermost part of the vascular cylinder of stems and leaves and in the pericycle of roots, whereas in Tetrapterys s.s. they are derived from the ground meristem, procambium, and cambium throughout the plant body and are present in the cortex and pith, either the pericycle in roots or the outermost part of the vascular system in stems and leaves, and the primary and secondary phloem. CONCLUSIONS: Laticifers seem to have evolved at least three times independently in Malpighiaceae, once in a lineage of trees and shrubs and twice in two distantly related megadiverse lianescent lineages. Laticifer evolution in Malpighiaceae is homoplastic and may be related to increases in species diversification.


Assuntos
Malpighiaceae , Látex , Meristema , Filogenia , Folhas de Planta
7.
Ann Bot ; 118(4): 733-746, 2016 Oct 01.
Artigo em Inglês | MEDLINE | ID: mdl-27296135

RESUMO

Background and Aims Roots are key in the evolution of plants, being in charge of critical functions, such as water and nutrient uptake and anchorage of the plant body. Stems of lianescent Sapindaceae conform to the anatomical patterns typical of climbing plants, having cambial variants in their stems and vessel dimorphism in their wood. The roots of these lianas, however, are largely unexplored, so we do not know whether the plant habit has as strong an impact on their anatomy as on the anatomy of their stems. Our aim was, therefore, to thoroughly explore the anatomy of liana roots, underground organs under selective pressure completely different from that experienced by the stems. Methods We studied mature roots of 14 species belonging to five of the six genera currently recognized in the lianoid tribe Paullinieae (Sapindaceae) using traditional methods for macro- and microscopic analyses, as well as micro-computed tomography (micro-CT) techniques. Key Results Roots were shown to be strongly shaped by the lianescent habit in Paullinieae, exhibiting traits of the lianescent vascular syndrome in terms of both wood and overall anatomy. The only way to distinguish root from stem in secondary growth is by the exarch protoxylem position in the roots, as opposed to the endarch position typical of the stems. The most conspicuous trait of the lianescent vascular syndrome, which is the presence of vessel dimorphism, is evident in all roots, and we hypothesize that it helps to create an efficient, safe pathway for water conduction from this organ towards the stems. Other anatomical features present were parenchyma bands, present in the wood of almost all of the analysed species, except for Thinouia and Urvillea, where parenchyma-like fibre bands alternating with ordinary fibres are present. The majority of the roots showed no cambial variants. However, lobed roots were found in Urvillea rufescens and phloem wedges were observed in Serjania lethalis and Serjania caracasana. Neo-formed peripheral vascular strands and cylinders were common in mature roots of Serjania caracasana, and vascular connections were found uniting the peripheral and central vascular cylinders through phloem wedges, as revealed by anatomical and micro-CT analyses. The vascular connections likely represent another key mechanism to create a network that increases the area of vascular tissue and contributes as an additional conduction pathway within these thick roots. Conclusions Some traits from the lianescent vascular syndrome, such as vessel dimorphism, are present in the roots of lianescent Sapindaceae, while others, such as cambial variants common in the stems, are largely absent.

8.
An Acad Bras Cienc ; 85(4): 1461-72, 2013.
Artigo em Inglês | MEDLINE | ID: mdl-24346798

RESUMO

Unlike other arboreal monocotyledons, the secondary growth of palms has for the past 100 years been described as diffuse. Solely cell enlargement and random parenchyma divisions, without the activity of a meristem, characterize such growth. Some previous works of the early 20th century have, however, mentioned the presence of a secondary meristem in the stems of palms, but this information was forgotten since then. Addressing to this question, we analysed palm stems of four species, with the aim to understand the possible presence of such secondary growth. We found that a meristematic band occurs between the cortex and the central cylinder and gives rise to new vascular bundles and parenchyma internally, producing parenchyma and fibres externally. It appears secondarily, i.e., it undergoes meristematic activity in the median and basal stem regions, far away from the apical region. In fact, a meristematic band is present and may be more common than currently believed, but uneasy to detect in certain palms for being restricted to specific regions of their stems. In conclusion, the diffuse secondary thickening is here shown not to be the only mechanism of secondary growth in palms. The presence of a meristem band in the stems of palms merits careful reconsideration.


Assuntos
Arecaceae/crescimento & desenvolvimento , Caules de Planta/crescimento & desenvolvimento , Arecaceae/anatomia & histologia , Arecaceae/classificação , Brasil , Caules de Planta/anatomia & histologia
9.
Am J Bot ; 98(4): 602-18, 2011 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-21613161

RESUMO

PREMISE OF THE STUDY: The phloem is a plant tissue with a critical role in plant nutrition and signaling. However, little is still known about the evolution of this tissue. In lianas of the Bignoniaceae, two distinct types of phloem coexist: a regular and a variant phloem. The cells associated with these two phloem types are known to be anatomically different; however, it is still unclear what steps were involved in the evolution of such differences. METHODS: Here we studied the anatomical development of the regular and variant phloem in representatives of all 21 genera of Bignonieae and used a phylogenetic framework to investigate the timing of changes associated with the evolution of each phloem type. KEY RESULTS: We found that the variant phloem always appears in a determinate location, between the leaf orthostichies. Furthermore, the variant phloem was mostly occupied by very wide sieve tubes and generally included a higher concentration of fibers, indicating an increase in conduction and mechanical support. On the other hand, the regular phloem included much more parenchyma, more and wider rays, and tiny sieve tubes that resembled terminal sieve tubes from plants with seasonal formation of vascular tissues; these findings suggest reduced conduction and higher storage capacity in the regular phloem. CONCLUSIONS: Overall, differences between the regular and variant phloem increased over time, leading to further specialization in conduction in the variant phloem and an increase in storage specialization in the regular phloem.


Assuntos
Bignoniaceae/anatomia & histologia , Evolução Biológica , Floema/anatomia & histologia , Filogenia , Bignoniaceae/genética , Floema/genética , Folhas de Planta/anatomia & histologia
10.
Evol Dev ; 11(5): 465-79, 2009.
Artigo em Inglês | MEDLINE | ID: mdl-19754704

RESUMO

Cambial variants represent a form of secondary growth that creates great stem anatomical diversity in lianas. Despite the importance of cambial variants, nothing is known about the developmental mechanisms that may have led to the current diversity seen in these stems. Here, a thorough anatomical analysis of all genera along the phylogeny of Bignonieae (Bignoniaceae) was carried out in order to detect when in their ontogeny and phylogeny there were shifts leading to different stem anatomical patterns. We found that all species depart from a common developmental basis, with a continuous, regularly growing cambium. Initial development is then followed by the modification of four equidistant portions of the cambium that reduce the production of xylem and increase the production of phloem, the former with much larger sieve tubes and an extended lifespan. In most species, the formerly continuous cambium becomes disjunct, with cambial portions within phloem wedges and cambial portions between them. Other anatomical modifications such as the formation of multiples of four phloem wedges, multiple-dissected phloem wedges, and included phloem wedges take place thereafter. The fact that each novel trait raised on the ontogenetic trajectory appeared in subsequently more recent ancestors on the phylogeny suggests a recapitulatory history. This recapitulation is, however, caused by the terminal addition of evolutionary novelties rather than a truly heterochronic process. Truly heterochronic processes were only found in shrubby species, which resemble juveniles of their ancestors, as a result of a decelerated phloem formation by the variant cambia. In addition, the modular evolution of phloem and xylem in Bignonieae seems to indicate that stem anatomical modifications in this group occurred at the level of cambial initials.


Assuntos
Bignoniaceae/genética , Evolução Molecular , Variação Genética , Floema/genética , Caules de Planta/genética , Xilema/genética , Bignoniaceae/anatomia & histologia , Floema/anatomia & histologia , Filogenia , Caules de Planta/anatomia & histologia , Xilema/anatomia & histologia
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA