Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Mais filtros











Base de dados
Assunto principal
Intervalo de ano de publicação
1.
PLoS One ; 19(8): e0307485, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-39172972

RESUMO

In this study, we present a novel approach to injection molding, focusing on the strength of weld lines in polyamide 6 (PA6) composite samples. By implementing a mold temperature significantly higher than the typical molding practice, which rarely exceeds 100°C, we assess the effects of advanced mold temperature management. The research introduces a newly engineered mold structure specifically designed for localized mold heating, distinguishing it as the 'novel cavity.' This innovative design is compared against traditional molding methods to highlight the improvements in weld line strength at elevated mold temperatures. To optimize the molding parameters, we apply an Artificial Neural Network (ANN) in conjunction with a Genetic Algorithm (GA). Our findings reveal that the optimal ultimate tensile strength (UTS) and elongation values are achieved with a filling time of 3.4 seconds, packing time of 0.8 seconds, melt temperature of 246°C, and a novel high mold temperature of 173°C. A specific sample demonstrated the best molding parameters at a filling time of 3.4 seconds, packing time of 0.4 seconds, melt temperature of 244°C, and mold temperature of 173°C, resulting in an elongation value of 582.6% and a UTS of 62.3 MPa. The most influential factor on the PA6 sample's UTS and elongation at the weld line was found to be the melt temperature, while the filling time had the least impact. SEM analysis of the fracture surfaces revealed ductile fractures with rough surfaces and grooves, indicative of the weld line areas' bonding quality. These insights pave the way for significant improvements in injection molding conditions, potentially revolutionizing the manufacturing process by enhancing the structural integrity of the weld lines in molded PA6 samples.


Assuntos
Nylons , Nylons/química , Temperatura , Resistência à Tração , Redes Neurais de Computação , Gases/química , Plásticos/química , Teste de Materiais , Caprolactama/química , Caprolactama/análogos & derivados , Algoritmos , Polímeros
2.
Materials (Basel) ; 13(12)2020 Jun 25.
Artigo em Inglês | MEDLINE | ID: mdl-32630543

RESUMO

Simulations and experiments were conducted with gas temperatures of 200-400 °C to investigate the impact of external gas-assisted mold temperature control (Ex-GMTC) on the quality of weld line of molding products. In the heating step, the heating rate was 19.6 °C/s from 30 to 128.5 °C in the first 5 s in a 400 °C gas environment. When applied to heating the weld line area of an injection mold, Ex-GMTC improved the appearance of the weld line when the cavity temperature was preheated to 150 °C. For the tensile strength test, a melt flow simulation comparing the packing pressure of different mesh thicknesses revealed that Ex-GMTC helped maintain a high pressure in the weld line area in different packing periods. This was verified by an experiment where Ex-GMTC was applied with 400 °C gas to change the mesh area temperature. The result indicated that an increase in the weld line area temperature from 60 to 180 °C improves the tensile strength of all mesh thicknesses, which was more pronounced with thinner parts, especially at 0.4 mm. The simulations revealed that high temperature is concentrated in the weld line area of the cavity surface, thus reducing the energy wasted during heating.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA