Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 4 de 4
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
J Infect Dis ; 228(Suppl 4): S322-S336, 2023 10 03.
Artigo em Inglês | MEDLINE | ID: mdl-37788501

RESUMO

The mass production of the graphics processing unit and the coronavirus disease 2019 (COVID-19) pandemic have provided the means and the motivation, respectively, for rapid developments in artificial intelligence (AI) and medical imaging techniques. This has led to new opportunities to improve patient care but also new challenges that must be overcome before these techniques are put into practice. In particular, early AI models reported high performances but failed to perform as well on new data. However, these mistakes motivated further innovation focused on developing models that were not only accurate but also stable and generalizable to new data. The recent developments in AI in response to the COVID-19 pandemic will reap future dividends by facilitating, expediting, and informing other medical AI applications and educating the broad academic audience on the topic. Furthermore, AI research on imaging animal models of infectious diseases offers a unique problem space that can fill in evidence gaps that exist in clinical infectious disease research. Here, we aim to provide a focused assessment of the AI techniques leveraged in the infectious disease imaging research space, highlight the unique challenges, and discuss burgeoning solutions.


Assuntos
COVID-19 , Doenças Transmissíveis , Humanos , Inteligência Artificial , Pandemias , Diagnóstico por Imagem/métodos , Doenças Transmissíveis/diagnóstico por imagem
2.
medRxiv ; 2022 Dec 22.
Artigo em Inglês | MEDLINE | ID: mdl-36172131

RESUMO

The success of artificial intelligence in clinical environments relies upon the diversity and availability of training data. In some cases, social media data may be used to counterbalance the limited amount of accessible, well-curated clinical data, but this possibility remains largely unexplored. In this study, we mined YouTube to collect voice data from individuals with self-declared positive COVID-19 tests during time periods in which Omicron was the predominant variant1,2,3, while also sampling non-Omicron COVID-19 variants, other upper respiratory infections (URI), and healthy subjects. The resulting dataset was used to train a DenseNet model to detect the Omicron variant from voice changes. Our model achieved 0.85/0.80 specificity/sensitivity in separating Omicron samples from healthy samples and 0.76/0.70 specificity/sensitivity in separating Omicron samples from symptomatic non-COVID samples. In comparison with past studies, which used scripted voice samples, we showed that leveraging the intra-sample variance inherent to unscripted speech enhanced generalization. Our work introduced novel design paradigms for audio-based diagnostic tools and established the potential of social media data to train digital diagnostic models suitable for real-world deployment.

3.
Science ; 370(6522): 1328-1334, 2020 12 11.
Artigo em Inglês | MEDLINE | ID: mdl-33303615

RESUMO

Adoptive T cell therapy (ACT) using ex vivo-expanded autologous tumor-infiltrating lymphocytes (TILs) can mediate complete regression of certain human cancers. The impact of TIL phenotypes on clinical success of TIL-ACT is currently unclear. Using high-dimensional analysis of human ACT products, we identified a memory-progenitor CD39-negative stem-like phenotype (CD39-CD69-) associated with complete cancer regression and TIL persistence and a terminally differentiated CD39-positive state (CD39+CD69+) associated with poor TIL persistence. Most antitumor neoantigen-reactive TILs were found in the differentiated CD39+ state. However, ACT responders retained a pool of CD39- stem-like neoantigen-specific TILs that was lacking in ACT nonresponders. Tumor-reactive stem-like TILs were capable of self-renewal, expansion, persistence, and superior antitumor response in vivo. These data suggest that TIL subsets mediating ACT response are distinct from TIL subsets enriched for antitumor reactivity.


Assuntos
Linfócitos T CD8-Positivos/imunologia , Imunoterapia Adotiva/métodos , Linfócitos do Interstício Tumoral/transplante , Melanoma/terapia , Neoplasias Cutâneas/terapia , Animais , Antígenos CD/análise , Antígenos de Diferenciação de Linfócitos T/análise , Apirase/análise , Linfócitos T CD8-Positivos/química , Feminino , Humanos , Lectinas Tipo C/análise , Melanoma/imunologia , Camundongos , Camundongos Mutantes , Neoplasias Cutâneas/imunologia
4.
J Clin Invest ; 130(1): 507-522, 2020 01 02.
Artigo em Inglês | MEDLINE | ID: mdl-31714901

RESUMO

X-linked immunodeficiency with magnesium defect, EBV infection, and neoplasia (XMEN) disease are caused by deficiency of the magnesium transporter 1 (MAGT1) gene. We studied 23 patients with XMEN, 8 of whom were EBV naive. We observed lymphadenopathy (LAD), cytopenias, liver disease, cavum septum pellucidum (CSP), and increased CD4-CD8-B220-TCRαß+ T cells (αßDNTs), in addition to the previously described features of an inverted CD4/CD8 ratio, CD4+ T lymphocytopenia, increased B cells, dysgammaglobulinemia, and decreased expression of the natural killer group 2, member D (NKG2D) receptor. EBV-associated B cell malignancies occurred frequently in EBV-infected patients. We studied patients with XMEN and patients with autoimmune lymphoproliferative syndrome (ALPS) by deep immunophenotyping (32 immune markers) using time-of-flight mass cytometry (CyTOF). Our analysis revealed that the abundance of 2 populations of naive B cells (CD20+CD27-CD22+IgM+HLA-DR+CXCR5+CXCR4++CD10+CD38+ and CD20+CD27-CD22+IgM+HLA-DR+CXCR5+CXCR4+CD10-CD38-) could differentially classify XMEN, ALPS, and healthy individuals. We also performed glycoproteomics analysis on T lymphocytes and show that XMEN disease is a congenital disorder of glycosylation that affects a restricted subset of glycoproteins. Transfection of MAGT1 mRNA enabled us to rescue proteins with defective glycosylation. Together, these data provide new clinical and pathophysiological foundations with important ramifications for the diagnosis and treatment of XMEN disease.


Assuntos
Síndrome Linfoproliferativa Autoimune/imunologia , Deficiência de Magnésio/imunologia , Doenças por Imunodeficiência Combinada Ligada ao Cromossomo X/imunologia , Antígenos CD/genética , Antígenos CD/imunologia , Síndrome Linfoproliferativa Autoimune/genética , Síndrome Linfoproliferativa Autoimune/patologia , Relação CD4-CD8 , Proteínas de Transporte de Cátions/genética , Proteínas de Transporte de Cátions/imunologia , Feminino , Glicosilação , Humanos , Deficiência de Magnésio/genética , Deficiência de Magnésio/patologia , Masculino , Doenças por Imunodeficiência Combinada Ligada ao Cromossomo X/genética , Doenças por Imunodeficiência Combinada Ligada ao Cromossomo X/patologia
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...