Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 46
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Chem Biol Drug Des ; 103(5): e14539, 2024 May.
Artigo em Inglês | MEDLINE | ID: mdl-38760181

RESUMO

Tyrosinase is a copper-containing enzyme involved in the biosynthesis of melanin pigment. While the excess production of melanin causes hyperpigmentation of human skin, hypopigmentation results in medical conditions like vitiligo. Tyrosinase inhibitors could be used as efficient skin whitening agents and tyrosinase agonists could be used for enhanced melanin synthesis and skin protection from UV exposure. Among a wide range of tyrosinase-regulating compounds, natural and synthetic derivatives of furochromenones, such as 8-methoxypsoralen (8-MOP), are known to both activate and inhibit tyrosinase. We recently reported a synthetic approach to generate a variety of dihydrofuro[3,2-c]chromenones and furo[3,2-c]chromenones in a metal-free condition. In the present study, we investigated these compounds for their potential as antagonists or agonists of tyrosinase. Using fungal tyrosinase-based in vitro biochemical assay, we obtained one compound (3k) which could inhibit tyrosinase activity, and the other compound (4f) that stimulated tyrosinase activity. The kinetic studies revealed that compound 3k caused 'mixed' type tyrosinase inhibition and 4f stimulated the catalytic efficiency. Studying the mechanisms of these compounds may provide a basis for the development of new effective tyrosinase inhibitors or activators.


Assuntos
Inibidores Enzimáticos , Monofenol Mono-Oxigenase , Monofenol Mono-Oxigenase/antagonistas & inibidores , Monofenol Mono-Oxigenase/metabolismo , Inibidores Enzimáticos/farmacologia , Inibidores Enzimáticos/química , Inibidores Enzimáticos/síntese química , Cinética , Humanos , Metoxaleno/farmacologia , Metoxaleno/química , Ativadores de Enzimas/química , Ativadores de Enzimas/farmacologia
2.
Mol Divers ; 27(2): 931-938, 2023 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-35543797

RESUMO

The human DNA repair enzyme AlkB homologue-2 (ALKBH2) repairs methyl adducts from genomic DNA. Overexpression of ALKBH2 has been implicated in both tumorigenesis and chemotherapy resistance in some cancers, including glioblastoma and renal cancer rendering it a potential therapeutic target and a diagnostic marker. However, no inhibitor is available against these important DNA repair proteins. Intending to repurpose a drug as an inhibitor of ALKBH2, we performed in silico evaluation of HIV protease inhibitors and identified Ritonavir as an ALKBH2-interacting molecule. Using molecular dynamics simulation, we elucidated the molecular details of Ritonavir-ALKBH2 interaction. The present work highlights that Ritonavir might be used to target the ALKBH2-mediated DNA alkylation repair.


Assuntos
Inibidores da Protease de HIV , Ritonavir , Humanos , Ritonavir/farmacologia , Inibidores da Protease de HIV/farmacologia , Simulação de Dinâmica Molecular , Enzimas Reparadoras do DNA/genética , Enzimas Reparadoras do DNA/metabolismo , Reparo do DNA , Homólogo AlkB 2 da Dioxigenase Dependente de alfa-Cetoglutarato/genética , Homólogo AlkB 2 da Dioxigenase Dependente de alfa-Cetoglutarato/metabolismo
3.
Immunol Cell Biol ; 101(3): 191-203, 2023 03.
Artigo em Inglês | MEDLINE | ID: mdl-36529987

RESUMO

Type 1 diabetes (T1D) is a condition characterized by an absolute deficiency of insulin. Loss of insulin-producing pancreatic islet ß cells is one of the many causes of T1D. Viral infections have long been associated with new-onset T1D and the balance between virulence and host immunity determines whether the viral infection would lead to T1D. Herein, we detail the dynamic interaction of pancreatic ß cells with severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) and the host immune system with respect to new-onset T1D. Importantly, ß cells express the crucial entry receptors and multiple studies confirmed that ß cells are infected by SARS-CoV-2. Innate immune system effectors, such as natural killer cells, can eliminate such infected ß cells. Although CD4+ CD25+ FoxP3+ regulatory T (TREG ) cells provide immune tolerance to prevent the destruction of the islet ß-cell population by autoantigen-specific CD8+ T cells, it can be speculated that SARS-CoV-2 infection may compromise self-tolerance by depleting TREG -cell numbers or diminishing TREG -cell functions by repressing Forkhead box P3 (FoxP3) expression. However, the expansion of ß cells by self-duplication, and regeneration from progenitor cells, could effectively replace lost ß cells. Appearance of islet autoantibodies following SARS-CoV-2 infection was reported in a few cases, which could imply a breakdown of immune tolerance in the pancreatic islets. However, many of the cases with newly diagnosed autoimmune response following SARS-CoV-2 infection also presented with significantly high HbA1c (glycated hemoglobin) levels that indicated progression of an already set diabetes, rather than new-onset T1D. Here we review the potential underlying mechanisms behind loss of functional ß-cell mass as a result of SARS-CoV-2 infection that can trigger new-onset T1D.


Assuntos
COVID-19 , Diabetes Mellitus Tipo 1 , Viroses , Humanos , Linfócitos T CD8-Positivos/metabolismo , Linfócitos T Reguladores , SARS-CoV-2/metabolismo , Insulina/metabolismo , Fatores de Transcrição Forkhead/metabolismo
4.
Access Microbiol ; 4(6): acmi000363, 2022 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-36004362

RESUMO

Modification of DNA bases plays important roles in the epigenetic regulation of eukaryotic gene expression. Among the different types of DNA methylation, 5-methylcytosine (5mC) is common in higher eukaryotes. Although bisulfite sequencing is the established detection method for this modification, newer methods, such as Oxford nanopore sequencing, have been developed as quick and reliable alternatives. An earlier study using sensitive liquid chromatography tandem mass spectrometry (LC-MS/MS) indicated the presence of 5mC at very low concentration in Saccharomyces cerevisiae. More recently, a comprehensive study of the yeast genome found 40 5mC sites using the computational tool Nanopolish on nanopore sequencing output raw data. In the present study, we are trying to validate the prediction of the 5mC modifications in yeast with Nanopolish and two other nanopore software tools, Tombo and DeepSignal. Using publicly available genome sequencing data, we compared the open-access computational tools, including Tombo, Nanopolish and DeepSignal, for predicting 5mC. Our results suggest that these tools are indeed capable of predicting DNA 5mC modifications at a specific location from Oxford nanopore sequencing data. We also predicted that 5mC present in the S. cerevisiae genome might be located predominantly at the RDN locus of chromosome 12.

5.
Org Biomol Chem ; 20(29): 5820-5835, 2022 07 27.
Artigo em Inglês | MEDLINE | ID: mdl-35838243

RESUMO

Herein, we report a novel and unexpected metal-free oxygenation of 2,3-diphenyl-1-indenones, under an oxygen atmosphere (air), to either 2,3-epoxy-2,3-diphenyl-1-indenone or 2-hydroxy-2,3-diphenyl-1-indanone, depending on the conditions. Several bioactive epoxy indenones and one-pot α-hydroxy indanones (α-acyloin) were synthesized from 2,3-diaryl dihydroindanone and 2,3-diarylindenone, respectively. A plausible reaction mechanism is also proposed, where oxygenation would take place at the α-position and further proton abstraction from the ß-position leads to epoxy indenone derivatives. A one-pot cis-hydroxy indanone protocol is also achieved directly from biaryl indenone via reduction, epimerization, and oxygenation. The synthesized compounds were evaluated for inhibitory activity against the DNA repair protein AlkB. Among the screened (17 tested) compounds, one epoxide derivative was found to be a specific inhibitor of AlkB enzyme function.


Assuntos
Reparo do DNA , Compostos de Epóxi , Alquilação , DNA , Solventes
6.
Biochim Biophys Acta Mol Cell Res ; 1869(8): 119278, 2022 08.
Artigo em Inglês | MEDLINE | ID: mdl-35489653

RESUMO

The presence of DNA in the cytoplasm of tumor cells induces the dendritic cell to produce type-I IFNs. Classically, the presence of foreign DNA in host cells' cytoplasm during viral infection elicits cGAS-STING mediated type-I IFN signaling and cytokine production. It is likely that cytosolic DNA leads to senescence and immune surveillance in transformed cells during the early stages of carcinogenesis. However, multiple factors, such as loss of cell-cycle checkpoint, mitochondrial damage and chromosomal instability, can lead to persistent accumulation of DNA in the cytoplasm of metastatic tumor cells. That is why aberrant activation of the type I IFN pathway is frequently associated with highly aggressive tumors. Intriguingly, two powerful intracellular deoxyribonucleases, DNase2 and TREX1, can target the cytoplasmic DNA for degradation. Yet the tumor cells consistently accumulate cytoplasmic DNA. This review highlights recent work connecting the lack of DNase2 and TREX1 function to innate immune signaling. It also summarizes the possible mechanisms that limit the activity of DNase2 and TREX1 in tumor cells and contributes to chronic inflammation.


Assuntos
DNA , Neoplasias , Citoplasma/genética , Citoplasma/metabolismo , Citosol/metabolismo , DNA/genética , Neoplasias/genética , Transdução de Sinais
7.
Bioorg Med Chem Lett ; 39: 127883, 2021 05 01.
Artigo em Inglês | MEDLINE | ID: mdl-33662536

RESUMO

Marine sponges of the genusSuberea produce variety of brominated tyrosine alkaloids which display diverse range of biological activities including antiproliferative, antimicrobial and antimalarial activities. In continuation of our search for biologically active marine natural products for antibacterial compounds, we report here the synthesis and evaluation of biological activity of panel of ianthelliformisamines and subereamine analogues using the literature known acid-amine coupling reaction. Several derivatives of Ianthelliformisamine were achieved by the coupling of Boc-protected polyamine chain with brominated aromatic acrylic acid derivatives by varying the bromine substituents on aromatic acid derivatives, amine spacer as well as geometry of the double bond, and then Boc-deprotection using TFA. Similarly, subereamine analogues were also synthesized employing coupling reaction between various brominated phenyl acrylic acids with commercially available chiral amino ester derivatives followed by ester hydrolysis. We screened these synthetic analogues for antibacterial activity against both Gram-negative (Escherichia coli) and Gram-positive (Staphylococcus aureus) strains. One of the compound 7c showed bactericidal activity against Staphylococcus aureus with an IC50 value of 3.8 µM (MIC = 25 µM).


Assuntos
Antibacterianos/farmacologia , Arginina/análogos & derivados , Produtos Biológicos/farmacologia , Escherichia coli/efeitos dos fármacos , Hidrocarbonetos Bromados/farmacologia , Staphylococcus aureus/efeitos dos fármacos , Tirosina/análogos & derivados , Antibacterianos/síntese química , Antibacterianos/química , Arginina/síntese química , Arginina/química , Arginina/farmacologia , Produtos Biológicos/síntese química , Produtos Biológicos/química , Relação Dose-Resposta a Droga , Escherichia coli/crescimento & desenvolvimento , Células HEK293 , Humanos , Hidrocarbonetos Bromados/síntese química , Hidrocarbonetos Bromados/química , Testes de Sensibilidade Microbiana , Estrutura Molecular , Staphylococcus aureus/crescimento & desenvolvimento , Relação Estrutura-Atividade , Tirosina/síntese química , Tirosina/química , Tirosina/farmacologia
8.
Chem Biol Drug Des ; 97(6): 1170-1184, 2021 06.
Artigo em Inglês | MEDLINE | ID: mdl-33764683

RESUMO

DNA alkylation damage, emanating from the exposure to environmental alkylating agents or produced by certain endogenous metabolic processes, affects cell viability and genomic stability. Fe(II)/2-oxoglutarate-dependent dioxygenase enzymes, such as Escherichia coli AlkB, are involved in protecting DNA from alkylation damage. Inspired by the natural product indenone derivatives reported to inhibit this class of enzymes, and a set of 2-chloro-3-amino indenone derivatives was synthesized and screened for their inhibitory properties against AlkB. The synthesis of 2-chloro-3-amino indenone derivatives was achieved from 2,3-dichloro indenones through addition-elimination method using alkyl/aryl amines under catalyst-free conditions. Using an in vitro reconstituted DNA repair assay, we have identified a 2-chloro-3-amino indenone compound 3o to be an inhibitor of AlkB. We have determined the binding affinity, mode of interaction, and kinetic parameters of inhibition of 3o and tested its ability to sensitize cells to methyl methanesulfonate that mainly produce DNA alkylation damage. This study established the potential of indenone-derived compounds as inhibitors of Fe(II)/2-oxoglutarate-dependent dioxygenase AlkB.


Assuntos
Alquilantes/síntese química , Reparo do DNA , Indenos/química , Alquilantes/farmacologia , Sítios de Ligação , Dano ao DNA , Desmetilação do DNA/efeitos dos fármacos , Reparo do DNA/efeitos dos fármacos , Escherichia coli/enzimologia , Proteínas de Escherichia coli/antagonistas & inibidores , Proteínas de Escherichia coli/metabolismo , Humanos , Indenos/metabolismo , Indenos/farmacologia , Cinética , Oxigenases de Função Mista/antagonistas & inibidores , Oxigenases de Função Mista/metabolismo , Simulação de Acoplamento Molecular , Ligação Proteica
9.
Eur J Pharm Sci ; 160: 105743, 2021 May 01.
Artigo em Inglês | MEDLINE | ID: mdl-33540041

RESUMO

Curcumin, a popular herbal medicine derived from turmeric, blocks the synthesis of prostaglandins by inhibiting Cyclooxygenase-1 and 2 (COX-1 and COX2). We have recently reported an efficient method of synthesizing curcumin and synthesised analogues. In the present study, we have investigated sixteen novel analogues of curcumin for their ability to inhibit COX-1 and COX-2. We report here that most of the curcumin analogues display selective inhibition of COX-2, whereas a few suppress COX-1 activity. Further, we examined the binding of these inhibitors by molecular docking and observed that the compound with pronounced selectivity for COX-2 displayed better binding to COX-2 compared to curcumin.


Assuntos
Curcumina , Inibidores de Ciclo-Oxigenase 2 , Curcumina/farmacologia , Ciclo-Oxigenase 1 , Ciclo-Oxigenase 2 , Inibidores de Ciclo-Oxigenase 2/farmacologia , Simulação de Acoplamento Molecular
10.
Biochem Biophys Res Commun ; 534: 114-120, 2021 01 01.
Artigo em Inglês | MEDLINE | ID: mdl-33321288

RESUMO

DNA integrity is challenged by both exogenous and endogenous alkylating agents. DNA repair proteins such as Escherichia coli AlkB family of enzymes can repair 1-methyladenine and 3-methylcytosine adducts by oxidative demethylation. Human AlkB homologue 5 (ALKBH5) is RNA N6-methyladenine demethylase and not known to be involved in DNA repair. Herein we show that ALKBH5 also has weak DNA repair activity and it can demethylate DNA 3-methylcytosine. The mutation of the amino acid residues involved in demethylation also abolishes the DNA repair activity of ALKBH5. Overexpression of ALKBH5 decreases the 3-methylcytosine level in genomic DNA and reduces the cytotoxic effects of the DNA damaging alkylating agent methyl methanesulfonate. Thus, demethylation by ALKBH5 might play a supporting role in maintaining genome integrity.


Assuntos
Homólogo AlkB 5 da RNA Desmetilase/metabolismo , Alquilantes/toxicidade , Dano ao DNA , Reparo do DNA/fisiologia , Homólogo AlkB 5 da RNA Desmetilase/genética , Citosina/análogos & derivados , Citosina/metabolismo , Adutos de DNA , Metilação de DNA , Desmetilação , Células HEK293 , Humanos , Mesilatos/toxicidade
11.
Free Radic Biol Med ; 159: 1-14, 2020 11 01.
Artigo em Inglês | MEDLINE | ID: mdl-32738395

RESUMO

Alcohol toxicity is a significant health problem with ~3 million estimated deaths per year globally. Alcohol is metabolized to the toxic metabolite, acetaldehyde by alcohol dehydrogenase or CYP2E1 in the hepatic tissue, and also induces reactive oxygen species (ROS), which together play a pivotal role in cell and tissue damage. Our previous studies with COS-7 cells transduced with unique human CYP2E1 variants that mostly localize to either microsomes or mitochondria revealed that mitochondrially-localized CYP2E1 drives alcohol toxicity through the generation of higher levels of ROS, which has a consequent effect on cytochrome c oxidase (CcO) and mitochondrial oxidative function. Alcohol treatment of human hepatocyte cell line, HepaRG, in monolayer cultures increased ROS, affected CcO activity/stability, and induced mitophagy. Alcohol treatment of 3D organoids of HepaRG cells induced higher levels of CYP2E1 mRNA and activated mitochondrial stress-induced retrograde signaling, and also induced markers of hepatic steatosis. Knock down of CYP2E1 mRNA using specific shRNA, FK506, a Calcineurin inhibitor, and Mdivi-1, a DRP1 inhibitor, ameliorated alcohol-induced mitochondrial retrograde signaling, and hepatic steatosis. These results for the first time present a mechanistic link between CYP2E1 function and alcohol mediated mitochondrial dysfunction, retrograde signaling, and activation of hepatic steatosis in a 3D organoid system that closely recapitulates the in vivo liver response.


Assuntos
Citocromo P-450 CYP2E1 , Dinâmica Mitocondrial , Citocromo P-450 CYP2E1/genética , Citocromo P-450 CYP2E1/metabolismo , Humanos , Fígado/metabolismo , Organoides/metabolismo , Estresse Oxidativo
12.
Redox Biol ; 36: 101606, 2020 09.
Artigo em Inglês | MEDLINE | ID: mdl-32604037

RESUMO

The mitochondrial electron transport chain is a major source of reactive oxygen species (ROS) and is also a target of ROS, with an implied role in the stabilization of hypoxia-inducible factor (HIF) and induction of the AMPK pathway. Here we used varying doses of two agents, Mito-Paraquat and Mito-Metformin, that have been conjugated to cationic triphenylphosphonium (TPP+) moiety to selectively target them to the mitochondrial matrix compartment, thereby resulting in the site-specific generation of ROS within mitochondria. These agents primarily induce superoxide (O2•-) production by acting on complex I. In Raw264.7 macrophages, C2C12 skeletal myocytes, and HCT116 adenocarcinoma cells, we show that mitochondria-targeted oxidants can induce ROS (O2•- and H2O2). In all three cell lines tested, the mitochondria-targeted agents disrupted membrane potential and activated calcineurin and the Cn-dependent retrograde signaling pathway. Hypoxic culture conditions also induced Cn activation and HIF1α activation in a temporally regulated manner, with the former appearing at shorter exposure times. Together, our results indicate that mitochondrial oxidant-induced retrograde signaling is driven by disruption of membrane potential and activation of Ca2+/Cn pathway and is independent of ROS-induced HIF1α or AMPK pathways.


Assuntos
Metformina , Paraquat , Peróxido de Hidrogênio , Metformina/farmacologia , Mitocôndrias , Espécies Reativas de Oxigênio , Transdução de Sinais
13.
DNA Repair (Amst) ; 87: 102804, 2020 03.
Artigo em Inglês | MEDLINE | ID: mdl-31981739

RESUMO

Cellular processes, such as DNA replication, recombination and transcription, require DNA strands separation and single-stranded DNA is formation. The single-stranded DNA is promptly wrapped by human single-stranded DNA binding proteins, replication protein A (RPA) complex. RPA binding not only prevent nuclease degradation and annealing, but it also coordinates cell-cycle checkpoint activation and DNA repair. However, RPA binding offers little protection against the chemical modification of DNA bases. This review focuses on the type of DNA base damage that occurs in single-stranded DNA and how the damage is rectified in human cells. The discovery of DNA repair proteins, such as ALKBH3, AGT, UNG2, NEIL3, being able to repair the damaged base in the single-stranded DNA, renewed the interest to study single-stranded DNA repair. These mechanistically different proteins work independently from each other with the overarching goal of increasing fidelity of recombination and promoting error-free replication.


Assuntos
Homólogo AlkB 2 da Dioxigenase Dependente de alfa-Cetoglutarato/metabolismo , Homólogo AlkB 3 da Dioxigenase Dependente de alfa-Cetoglutarato/metabolismo , Dano ao DNA , DNA de Cadeia Simples/genética , Reparo do DNA , Replicação do DNA , DNA de Cadeia Simples/efeitos dos fármacos , Humanos , Recombinação Genética , Proteína de Replicação A/metabolismo
14.
Nucleic Acids Res ; 47(22): 11729-11745, 2019 12 16.
Artigo em Inglês | MEDLINE | ID: mdl-31642493

RESUMO

The integrity of our DNA is challenged daily by a variety of chemicals that cause DNA base alkylation. DNA alkylation repair is an essential cellular defence mechanism to prevent the cytotoxicity or mutagenesis from DNA alkylating chemicals. Human oxidative demethylase ALKBH3 is a central component of alkylation repair, especially from single-stranded DNA. However, the molecular mechanism of ALKBH3-mediated damage recognition and repair is less understood. We report that ALKBH3 has a direct protein-protein interaction with human RAD51 paralogue RAD51C. We also provide evidence that RAD51C-ALKBH3 interaction stimulates ALKBH3-mediated repair of methyl-adduct located within 3'-tailed DNA, which serves as a substrate for the RAD51 recombinase. We further show that the lack of RAD51C-ALKBH3 interaction affects ALKBH3 function in vitro and in vivo. Our data provide a molecular mechanism underlying upstream events of alkyl adduct recognition and repair by ALKBH3.


Assuntos
Homólogo AlkB 3 da Dioxigenase Dependente de alfa-Cetoglutarato/metabolismo , Reparo do DNA , Proteínas de Ligação a DNA/fisiologia , Transferases/metabolismo , Alquilação , Células Cultivadas , Adutos de DNA/metabolismo , Dano ao DNA/genética , Reparo do DNA/genética , Proteínas de Ligação a DNA/metabolismo , Células HEK293 , Humanos , Células PC-3 , Ligação Proteica , Rad51 Recombinase/metabolismo
15.
J Biol Chem ; 294(26): 10336-10348, 2019 06 28.
Artigo em Inglês | MEDLINE | ID: mdl-31113867

RESUMO

Parkinson's disease (PD) is a major human disease associated with degeneration of the central nervous system. Evidence suggests that several endogenously formed 1-methyl-4-phenyl-1,2,3,6-tetrahydropyridine (MPTP)-mimicking chemicals that are metabolic conversion products, especially ß-carbolines and isoquinolines, act as neurotoxins that induce PD or enhance progression of the disease. We have demonstrated previously that mitochondrially targeted human cytochrome P450 2D6 (CYP2D6), supported by mitochondrial adrenodoxin and adrenodoxin reductase, can efficiently catalyze the conversion of MPTP to the toxic 1-methyl-4-phenylpyridinium ion. In this study, we show that the mitochondrially targeted CYP2D6 can efficiently catalyze MPTP-mimicking compounds, i.e. 2-methyl-1,2,3,4-tetrahydroisoquinoline, 2-methyl-1,2,3,4-tetrahydro-ß-carboline, and 9-methyl-norharmon, suspected to induce PD in humans. Our results reveal that activity and respiration in mouse brain mitochondrial complex I are significantly affected by these toxins in WT mice but remain unchanged in Cyp2d6 locus knockout mice, indicating a possible role of CYP2D6 in the metabolism of these compounds both in vivo and in vitro These metabolic effects were minimized in the presence of two CYP2D6 inhibitors, quinidine and ajmalicine. Neuro-2a cells stably expressing predominantly mitochondrially targeted CYP2D6 were more sensitive to toxin-mediated respiratory dysfunction and complex I inhibition than cells expressing predominantly endoplasmic reticulum-targeted CYP2D6. Exposure to these toxins also induced the autophagic marker Parkin and the mitochondrial fission marker Dynamin-related protein 1 (Drp1) in differentiated neurons expressing mitochondrial CYP2D6. Our results show that monomethylamines are converted to their toxic cationic form by mitochondrially directed CYP2D6 and result in neuronal degradation in mice.


Assuntos
Citocromo P-450 CYP2D6/fisiologia , Modelos Animais de Doenças , Metilaminas/toxicidade , Mitocôndrias/patologia , Neuroblastoma/patologia , Neurônios/patologia , Doença de Parkinson/patologia , 1-Metil-4-Fenil-1,2,3,6-Tetra-Hidropiridina/efeitos adversos , Animais , Humanos , Masculino , Camundongos , Camundongos Endogâmicos C57BL , Camundongos Knockout , Mitocôndrias/efeitos dos fármacos , Mitocôndrias/metabolismo , Neuroblastoma/etiologia , Neuroblastoma/metabolismo , Neurônios/efeitos dos fármacos , Neurônios/metabolismo , Neurotoxinas/toxicidade , Doença de Parkinson/etiologia , Doença de Parkinson/metabolismo , Células Tumorais Cultivadas
16.
Biochem Biophys Res Commun ; 509(3): 779-783, 2019 02 12.
Artigo em Inglês | MEDLINE | ID: mdl-30616886

RESUMO

Repair of DNA alkylation damage is essential for maintaining genome integrity and Fe(II)/2-oxoglutarate(2OG)-dependent dioxygenase family of enzymes play crucial role in repairing some of the alkylation damages. Alkylation repair protein-B (AlkB) of Escherichia coli belongs to Fe(II)/2OG-dependent dioxygenase family and carries out DNA dealkylation repair. We report here identification of a hypothetical Mycobacterium leprae protein (accession no. ML0190) from the genomic database and show that this 615-bp open reading frame encodes a protein with sequence and structural similarity to Fe(II)/2OG-dependent dioxygenase AlkB. We identified mRNA transcript of this gene in the M. leprae infected clinical skin biopsy samples isolated from the leprosy patients. Heterologous expression of ML0190 in methyl methane sulfonate (MMS) sensitive and DNA repair deficient strain of Saccharomyces cerevisiae and Escherichia coli resulted in resistance to alkylating agent MM. The results of the present study imply that Mycobacterium leprae ML0190 is involved in protecting the bacterial genome from DNA alkylation damage.


Assuntos
Proteínas de Bactérias/genética , Escherichia coli/efeitos dos fármacos , Metanossulfonato de Metila/toxicidade , Mutagênicos/toxicidade , Mycobacterium leprae/genética , Saccharomyces cerevisiae/efeitos dos fármacos , Alquilação/efeitos dos fármacos , Dano ao DNA/efeitos dos fármacos , Escherichia coli/genética , Genes Bacterianos , Genoma Bacteriano/efeitos dos fármacos , Humanos , Hanseníase/microbiologia , Modelos Moleculares , Mycobacterium leprae/efeitos dos fármacos , Saccharomyces cerevisiae/genética
17.
Clin Chim Acta ; 487: 325-329, 2018 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-30342876

RESUMO

Brain-specific biomolecules are being increasingly investigated as a viable alternative to the clinical scores and radiological features, on which we still rely upon for stratification, therapy and predicting outcome in traumatic brain injury (TBI). TBI generally leads to release of various chemical compound within the cerebrospinal fluid (CSF) or blood depending on the severity of injury, which were studied variedly in last decades. However, most of these compounds being non-specific to brain, their applicability was challenged further. This review encompasses the novel and promising biomarkers being studied in the present decade, with encouraging results in laboratory and animal or human models.


Assuntos
Biomarcadores Tumorais/análise , Lesões Encefálicas Traumáticas/diagnóstico , Animais , Humanos
18.
Microb Pathog ; 124: 316-321, 2018 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-30172902

RESUMO

Mycobacterium leprae is an unculturable obligate pathogen and causative agent for debilitating human disease leprosy. Due to reductive genome evolution M leprae genome harbours large number of pseudogenes and small number of genes (∼1600 genes and ∼1300 pseudogenes). How M leprae remained a successful human parasite with small set of genes remains poorly understood and provided us the impetus to investigate the intergenic regions of M leprae genome for the presence of possible open reading frames (ORFs). In this work, we have manually scanned all the intergenic regions of M leprae genome and identified 106 potential ORFs. Among these, 12 are large ORFs: encoding hypothetical proteins (HP) of more than 100 amino acids. We have also found 67 ORFs encoding 50-100 amino acids proteins and another 27 ORFs for 30-50 amino acids peptides. We have validated the presence of transcripts for large HPs by quantitative reverse transcriptase PCR (qRT-PCR). Our results suggest that some of the M leprae large HPs are indeed expressed at low level in leprosy patients. The present results will shed light on the intergenic ORFs of M leprae and further our understanding of the pathogenesis of leprosy.


Assuntos
Proteínas de Bactérias/genética , DNA Intergênico/genética , Genoma Bacteriano , Hanseníase/microbiologia , Mycobacterium leprae/genética , Fases de Leitura Aberta , Humanos , Mycobacterium leprae/metabolismo , Pseudogenes , Reação em Cadeia da Polimerase Via Transcriptase Reversa
19.
Toxicol Sci ; 166(2): 428-440, 2018 Dec 01.
Artigo em Inglês | MEDLINE | ID: mdl-30165701

RESUMO

We previously reported that mitochondrial CYP1 enzymes participate in the metabolism of polycyclic aromatic hydrocarbons and other carcinogens leading to mitochondrial dysfunction. In this study, using Cyp1b1-/-, Cyp1a1/1a2-/-, and Cyp1a1/1a2/1b1-/- mice, we observed that cigarette and environmental toxins, namely benzo[a]pyrene (BaP) and 2,3,7,8-tetrachlorodibenzo-p-dioxin (TCDD), induce pancreatic mitochondrial respiratory dysfunction and pancreatitis. Our results suggest that aryl hydrocarbon receptor (AhR) activation and resultant mitochondrial dysfunction are associated with pancreatic pathology. BaP treatment markedly inhibits pancreatic mitochondrial oxygen consumption rate (OCR), ADP-dependent OCR, and also maximal respiration, in wild-type mice but not in Cyp1a1/1a2-/- and Cyp1a1/1a2/1b1-/- mice. In addition, both BaP and TCDD treatment markedly affected mitochondrial complex IV activity, in addition to causing marked reduction in mitochondrial DNA content. Interestingly, the AhR antagonist resveratrol, attenuated BaP-induced mitochondrial respiratory defects in the pancreas, and reversed pancreatitis, both histologically and biochemically in wild-type mice. These results reveal a novel role for AhR- and AhR-regulated CYP1 enzymes in eliciting mitochondrial dysfunction and cigarette toxin-mediated pancreatic pathology. We propose that increased mitochondrial respiratory dysfunction and oxidative stress are involved in polycyclic aromatic hydrocarbon associated pancreatitis. Resveratrol, a chemo preventive agent and AhR antagonist, and CH-223191, a potent and specific AhR inhibitor, confer protection against BaP-induced mitochondrial dysfunction and pancreatic pathology.


Assuntos
Benzo(a)pireno/toxicidade , Família 1 do Citocromo P450/metabolismo , Mitocôndrias/efeitos dos fármacos , Mitocôndrias/metabolismo , Pancreatite/induzido quimicamente , Dibenzodioxinas Policloradas/toxicidade , Receptores de Hidrocarboneto Arílico/metabolismo , Resveratrol/farmacologia , Animais , Citocinas/metabolismo , Feminino , Masculino , Camundongos , Camundongos Knockout , Pancreatite/fisiopatologia , Fumaça/efeitos adversos , Nicotiana/efeitos adversos
20.
Mol Biol Rep ; 45(5): 865-870, 2018 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-29974396

RESUMO

Intrinsically disordered regions (IDRs) of proteins often regulate function through interactions with folded domains. Escherichia coli single-stranded DNA binding protein SSB binds and stabilizes single-stranded DNA (ssDNA). The N-terminal of SSB contains characteristic OB (oligonucleotide/oligosaccharide-binding) fold which binds ssDNA tightly but non-specifically. SSB also forms complexes with a large number proteins via the C-terminal interaction domain consisting mostly of acidic amino acid residues. The amino acid residues located between the OB-fold and C-terminal acidic domain are known to constitute an IDR and no functional significance has been attributed to this region. Although SSB is known to bind many DNA repair protein, it is not known whether it binds to DNA dealkylation repair protein AlkB. Here, we characterize AlkB SSB interaction and demonstrate that SSB binds to AlkB via the IDR. We have established that AlkB-SSB interaction by in vitro pull-down and yeast two-hybrid analysis. We mapped the site of contact to be the residues 152-169 of SSB. Unlike most of the SSB-binding proteins which utilize C-terminal acidic domain for interaction, IDR of SSB is necessary and sufficient for AlkB interaction.


Assuntos
Proteínas de Ligação a DNA/química , Proteínas de Ligação a DNA/metabolismo , Proteínas de Escherichia coli/química , Proteínas de Escherichia coli/metabolismo , Escherichia coli/metabolismo , Oxigenases de Função Mista/metabolismo , Sítios de Ligação , DNA Bacteriano/metabolismo , DNA de Cadeia Simples/metabolismo , Escherichia coli/química , Modelos Moleculares , Ligação Proteica , Domínios Proteicos
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...