Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 7 de 7
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Heliyon ; 10(6): e28025, 2024 Mar 30.
Artigo em Inglês | MEDLINE | ID: mdl-38545221

RESUMO

African Trypanosomiasis caused by trypanosome parasites continues to be a major neglected health problem, particularly in developing countries. Current treatments are marked by serious side effects, low effectiveness, high toxicity, and drug resistance prompting the need to develop novel, safe, effective, and alternative antitrypanosomal compounds. Anopyxis klaineana is an ethnomedicinal plant used in West Africa to treat many ailments including protozoan diseases. In this study, we investigated the antitrypanosomal potential of stem bark extracts of A. klaineana through in vitro and in silico approaches. A. klaineana extracts were tested for their antitrypanosomal activities against Trypanosoma brucei parasite in vitro using Alamar blue assay. In addition, the antioxidant and cytotoxic activities were determined. LC-ESI-QTOF-MS was used to identify potential bioactive compounds present in the A. klaineana extracts. Bioactive compounds identified were subjected to molecular docking studies against Trypanosoma brucei's trypanothione reductase (TR) and Uridine Diphosphate Galactose 4'-Epimerase (UDP). The A. klaineana extracts (methanol, hexane, chloroform, and ethyl acetate) exhibited potential anti-trypanosomal activities with IC50 values of 21.25 ± 0.755,4.35 ± 0.166,2.57 ± 0.153 and 22.92 ± 2.321 µg/mL respectively. Moreover, the methanolic crude extracts showed moderate cytotoxicity against HepG2 and PNT2 cells, with IC50 values of 68.0 ± 2.05 and 78.7 ± 2.63 µg/mL respectively. LC-MS analysis revealed the presence of 24 bioactive compounds with 5 being druglike. Risperidone, Ranolazine, Dihydro-7-Desacetyldeoxygedunin, 6 beta-Hydroxytriamcinolone acetonide, and Dimethylmatairesinol were identified as novel potential inhibitors of TR and UDP with binding affinities of -10.4, -7.9, -8.7, -8.4 and -7.1 kcal/mol respectively against TR and -10.8, -8.4, -8.4, -7.6 and -8.1 respectively against UDP. This study indicates that A. klaineana has potential antitrypanosomal properties and therefore may have the potential to be developed as a therapeutic intervention for treating African trypanosomiasis.

2.
J Evid Based Integr Med ; 27: 2515690X211073709, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-35037519

RESUMO

Malaria affects about half of the world's population. The sub-Saharan African region is the most affected. Plant natural products have been a major source of antimalarial drugs; the first (quinine) and present (artemisinin) antimalarials are of natural product origin. Some secondary metabolites demonstrate adjuvant antioxidant effects and selective activity. The focus of this study was to investigate the anti-plasmodial activity, cytotoxicities and antioxidant properties of eight (8) Ghanaian medicinal plants. The anti-plasmodial activity was determined using the SYBR green assay and the tetrazolium-based colorimetric assay (MTT) was employed to assess cytotoxicity of extracts to human RBCs and HL-60 cells. Antioxidant potential of plant extracts was evaluated using Folin-Ciocalteu and superoxide dismutase assays. Phytochemical contstituents of the plant extracts were also assessed. All the extracts demonstrated anti-plasmodial activities at concentrations <50 µg/ml. Parkia clappertoniana and Terminalia ivorensis elicited the strongest anti-plasmodial activities with 50% inhibitory concentrations (IC50) of 1.13 µg/ml and 0.95 µg/ml, respectively. This is the first report on anti-plasmodial activities of Baphia nitida, Tabernaemontana crassa and Treculia Africana. T. Africana showed moderate anti-plasmodial activity with IC50 value of 6.62 µg/mL. Extracts of P. clappertoniana, T. Africana and T. ivorensis (0.4 mg/mL) showed >50% antioxidant effect (SOD). The extracts were not cytotoxicity towards RBCs at the concentration tested (200 µg/ml) but were weakly cytotoxic to HL-60 cell. Selectivity indices of most of the extracts were greater than 10. Our results suggest that most of the plant extracts have strong anti-plasmodial activity and antioxidant activity which warrants further investigations.


Assuntos
Plantas Medicinais , Antioxidantes/farmacologia , Gana , Humanos , Plantas Medicinais/química , Plasmodium berghei , Plasmodium falciparum
3.
Ghana Med J ; 55(4): 292-297, 2021 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-35957926

RESUMO

Objective: The main aim of this study was to investigate levels of total aflatoxin and aflatoxin M1 in bokina, a home-made non-alcoholic beverage prepared from dairy milk, millet and sugar. Methods: Bokina, dairy milk and millet were purchased monthly over a period of 7 months from bokina producers at Ashaiman and Nima, in Ghana. Total aflatoxin and aflatoxin M1 levels in these samples were measured using a fluorometric procedure and High-Performance Liquid Chromatography. Results: Aflatoxin levels in bokina samples ranged from 1.0 to 21.0 ppb for Ashaiman samples and 1.0 to 23.0 ppb for Nima samples. Out of 21 samples from each site 1 from Ashiaman and 2 from Nima had levels total aflatoxin above the acceptable limit of 20 ppb. Similarly, total aflatoxin levels millet samples ranged from 1.0 to 55.0 ppb for Ashaiman and 5.0 to 53.0 ppb for Nima samples, with 2 samples from Ashiaman and 6 from Nima having levels above 20ppb. The levels of Aflatoxin M1 in milk ranged from 0.09 to 6.20 ppb for Ashaiman samples and 0.13 to 12.55 ppb for Nima samples. Out of the samples, 12 from Ashiaman and 10 from Nima (n=21) had levels of Aflatoxin M1 above the acceptable limit of 0.5 ppb. Conclusion: Bokina samples tested were contaminated with aflatoxin. All doses of aflatoxin have a cumulative effect on the risk of cancer. Therefore, farmers and bokina producers must be educated on good storage practices and monitored to protect the public from aflatoxin exposure and toxicity. Funding: The study was self-funded.


Assuntos
Aflatoxina M1 , Aflatoxinas , Aflatoxina M1/análise , Aflatoxinas/análise , Animais , Contaminação de Alimentos/análise , Gana , Humanos , Leite/química
4.
Artigo em Inglês | MEDLINE | ID: mdl-32714422

RESUMO

BACKGROUND: There is considerable evidence that many patients concurrently administer dietary supplements with conventional drugs, creating a risk for potential drug-supplement interaction. The aim of this study was to determine the effect of Cellgevity® supplement on selected rat liver cytochrome P450 (CYP) enzymes. Also, based on our previous finding, we sought to determine the effect of Cellgevity® on the pharmacokinetics of carbamazepine, a CYP3A4 substrate. METHODS: Male Sprague-Dawley (SD) rats were randomly put into 5 groups and administered either distilled water (negative control), Cellgevity® (3 separate doses), or phenobarbital (positive control), per os. Modulation of liver CYP enzyme activity was evaluated after 30 days of treatment, using probe substrates, spectroscopic, and high-performance liquid chromatographic methods. In the pharmacokinetic study, 12 SD rats were put into 2 groups and administered carbamazepine plus normal saline (group 1) or carbamazepine plus Cellgevity® (group 2), per os, both over a period of 14 days. Blood samples from rats in the same group were collected after treatment. Serum samples were prepared and pooled together at each specific sampling time point. Levels of carbamazepine were determined using a fluorescence polarization immunoassay. RESULTS: Activities of rat liver CYP1A1/2, CYP2C9, and CYP2D6 were significantly increased by Cellgevity® after 30-day treatment. Pharmacokinetic parameters for rats administered carbamazepine with Cellgevity® vis-a-vis carbamazepine with normal saline were as follows: C max; 20 µmol/L vs 11 µmol/L, AUC0⟶24; 347 µmol h/L vs 170 µmol h/L, K e; 0.28 h-1 vs 0.41 h-1, and t 1/2; 2.3 h vs 1.7 h, respectively. CONCLUSIONS: Cellgevity® increased the activity of rat CYP1A1/2, CYP2C9, and CYP2D6 enzymes and was found to alter the pharmacokinetics of carbamazepine in rats.

5.
J Evid Based Integr Med ; 23: 2515690X18810001, 2018.
Artigo em Inglês | MEDLINE | ID: mdl-30392393

RESUMO

Drug interactions are key reasons for adverse drug reactions and attrition from market. Major infectious diseases causing morbidity/mortality in Ghana are malaria, tuberculosis, and HIV/AIDS. In this study, plant medicines commonly used to treat/manage these diseases in Ghana were investigated for their potential to modulate rat cytochrome P450 enzyme activities. Fluorescence and high-performance liquid chromatography-based assays were used to assess effects of antimalarial plant medicines, Fever (FEV), Mal-TF (MAL), and Kantinka terric (KT); anti-TB medicines, Chestico (CHES), CA + ST Pains + HWNT (TF), and Kantinka herbatic (KHB); and anti-HIV/AIDS medicines, Wabco (WAB), AD + T/AD (LIV) and Kantinka BA (KBA) on rat liver microsomal cytochrome P450 enzyme activities. Effects of medicines on rat biochemical and hematological parameters were also assessed. Generally, the medicines altered microsomal CYP1A1/1A2, CYP2B1/2B2, CYP2C9, and CYP2D6 activities. Only KBA elicited an increase (80%) in CYP1A1/1A2 activity. FEV, MAL, CHES, WAB, and LIV strongly inhibited the enzyme activity. All the medicines significantly inhibited CYP2C9 (24%-80%) activity. CYP2D6 activity increased after treatment with MAL, KBA, LIV, and TF. Also, MAL, WAB, LIV, KHB, and CHES increased CYP2B1/2B2 activity, while KT decrease the activity. Generally, the medicines altered liver function in the rats. Cholesterol levels declined after KBA treatment only. White and red blood cell counts, hemoglobin and hematocrit levels were significantly reduced in KT- and KBA-treated rats. Our results suggest that use of the medicines could have implications for drug interactions and safety, particularly if the medicines are administered over prolonged periods. Further investigations are imperative to establish clinical relevance of these results.


Assuntos
Fármacos Anti-HIV/administração & dosagem , Antimaláricos/administração & dosagem , Antituberculosos/administração & dosagem , Sistema Enzimático do Citocromo P-450/metabolismo , Microssomos Hepáticos/efeitos dos fármacos , Extratos Vegetais/farmacologia , Plantas Medicinais/química , Animais , Inibidores das Enzimas do Citocromo P-450/administração & dosagem , Infecções por HIV/tratamento farmacológico , Infecções por HIV/enzimologia , Humanos , Malária/tratamento farmacológico , Malária/enzimologia , Masculino , Microssomos Hepáticos/enzimologia , Ratos , Ratos Sprague-Dawley , Tuberculose/tratamento farmacológico , Tuberculose/enzimologia
6.
Artigo em Inglês | MEDLINE | ID: mdl-29977317

RESUMO

BACKGROUND: There is considerable evidence that many people take dietary supplements including those of herbal origin as an alternative therapy to improve their health. One such supplement, with an amalgam of constituents, is CellGevity®. However, the effect of this dietary supplement on drug-metabolizing enzymes is poorly understood, as it has not been studied extensively. Therefore, we investigated the effect of CellGevity dietary supplement on selected rat liver microsomal cytochrome P450 (CYP) enzymes, the most common drug-metabolizing enzymes. We also determined the total antioxidant potential of this dietary supplement in vitro. METHODS: To determine the antioxidant potential of CellGevity dietary supplement, 2,2-diphenyl-2-picryl-hydrazyl (DPPH), total phenolic, and flavonoid assays were used after initial preparation of a solution form of the supplement (low dose, LD; 4 mg/kg and high dose, HD; 8 mg/kg). Rats received oral administration of these doses of the supplement for 7 days, after which the effect of the supplement on selected liver CYP enzymes was assessed using probe substrates and spectroscopic and high-performance liquid chromatographic methods. Rats which received daily administration of 80 mg/kg of phenobarbitone and distilled water served as positive and negative controls, respectively. RESULTS: The IC50 value of the supplement 0.34 ± 0.07 mg/ml compared to 0.076 ± 0.03 mg/ml of the BHT (positive control). The total phenolic content of the supplement at a concentration of 2.5 mg/ml was 34.97 g gallic acid equivalent (GAE)/100 g while its total flavonoid content at a concentration of 2.5 mg/ml was 6 g quercetin equivalent (QE)/100 g. The supplement significantly inhibited rat CYP2B1/2B2 (LDT 92.4%; HDT 100%), CYP3A4 (LDT 81.2%; HDT 71.7%), and CYP2C9 (LDT 21.7%; HDT 28.5%) while it had no significant inhibitory effect on CYPs 1A1/1A2, CYP1A2, and CYP2D6. CONCLUSION: CellGevity dietary supplement possesses moderate antioxidant activity in vitro and has an inhibitory effect on selected rat liver CYP enzymes, suggesting its potential interaction with drugs metabolized by CYP enzymes.

7.
Am J Chin Med ; 43(4): 757-67, 2015.
Artigo em Inglês | MEDLINE | ID: mdl-26119959

RESUMO

Alnus japonica Steud is a tree that grows in damp areas of mountain valleys and has been used as a traditional medicine in Asia. We investigated the antiproliferative activity of hirsutanone (Hir) and oregonin (Ore) in human cancer cell lines and elucidated their mechanisms of action. A cytotoxicity study using a panel of 12 human cancer and 4 normal cell lines indicated that Hir exhibited potent antiproliferative activity against 4 leukemia (Jurkat, U937, THP-1, and HL-60) and 2 colon cancer cell lines (HCT-15 and Colo205). Although Ore suppressed the cell growth of Jurkat and THP-1, its inhibitory potency was weaker than that of Hir. The IC50 values of Hir and Ore in Jurkat were 11.37 µM and 22.16 µM, respectively. Further analysis on Jurkat cells demonstrated that Hir caused a sequence of events involved in apoptosis, including nuclear morphological changes and accumulation of cells with sub-G1 DNA content. Hir led to the cleavage of poly(ADP-ribose) polymerase (PARP) and activation of caspase-3, -8, and -9. In addition, Hir-induced PARP cleavage was completely abolished by specific inhibitors to these caspases. Our data suggested that Hir is a potent antiproliferative compound against the 4 leukemia cell lines and the 2 colon cancer cell lines tested. Furthermore, Hir exerts antiproliferative actions via caspase-dependent apoptotic cell death.


Assuntos
Alnus/química , Apoptose/efeitos dos fármacos , Proliferação de Células/efeitos dos fármacos , Diarileptanoides/isolamento & purificação , Diarileptanoides/farmacologia , Leucemia/patologia , Caspases/metabolismo , Linhagem Celular Tumoral , Sobrevivência Celular/efeitos dos fármacos , Humanos , Casca de Planta/química
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...