Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 36
Filtrar
1.
PLoS One ; 18(11): e0294066, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-38019839

RESUMO

Leucocytozoon is a haemosporidian parasite known to cause leucocytozoonosis in domestic and wild birds in most parts of the world. It is an important pathogen, as some species can be pathogenic, especially in domestic birds. One of the factors affecting poultry health management worldwide is parasitism. However, the study of haemosporidian parasites in Ghana is still lacking. This study sought to assess the prevalence and diversity of Leucocytozoon parasites in domestic birds in Ghana. Blood samples were collected from domestic birds in Ghana's Bono and Eastern regions to screen for Leucocytozoon parasites. Thin blood smears were prepared for microscopy and DNA was extracted from whole blood kept in ethylenediaminetetraacetic acid (EDTA) tubes for PCR. Due to the large number of samples, real-time PCR was performed to amplify the conserved rDNA gene. Two different nested PCR protocols were performed on the positive samples obtained from real-time PCR results, to amplify a partial region of the mitochondrial cytochrome b gene and the amplicons were sequenced. Sequencing revealed six new lineages of Leucocytozoon sp. recovered in 976 individual domestic birds and these sequences were deposited in the National Center for Biotechnology Information (NCBI) GenBank. An overall Leucocytozoon prevalence of 11.6% was reported in all birds sampled. The most prevalent lineage LGHA146 (GenBank accession no. OM643346) (93.8%) was found infecting 3 bird species, Gallus gallus, Meleagris gallopavo, and Anas platyrhynchos. Phylogenetic analysis revealed that the new lineages (GenBank accession nos. OM643342, OM643343, OM643344, OM643345, OM643346, and OM643347), reported in this study were closely related to Leucocytozoon schoutedeni. We suggest that further studies be conducted to evaluate the effect of these parasite species on the general well-being of poultry in Ghana.


Assuntos
Doenças das Aves , Haemosporida , Parasitos , Infecções Protozoárias em Animais , Animais , Filogenia , Prevalência , Gana/epidemiologia , Doenças das Aves/epidemiologia , Doenças das Aves/parasitologia , Haemosporida/genética , Aves , Parasitos/genética , Infecções Protozoárias em Animais/epidemiologia , Infecções Protozoárias em Animais/parasitologia
2.
Malar J ; 22(1): 272, 2023 Sep 14.
Artigo em Inglês | MEDLINE | ID: mdl-37710279

RESUMO

BACKGROUND: Malaria and schistosomiasis persist as major public health challenge in sub-Saharan Africa. These infections have independently and also in polyparasitic infection been implicated in anaemia and nutritional deficiencies. This study aimed at assessing asymptomatic malaria, intestinal Schistosoma infections and the risk of anaemia among school children in the Tono irrigation area in the Kassena Nankana East Municipal (KNEM) in the Upper East Region of Northern Ghana. METHODS: A cross sectional survey of 326 school children was conducted in the KNEM. Kato Katz technique was used to detect Schistosoma eggs in stool. Finger-prick capillary blood sample was used for the estimation of haemoglobin (Hb) concentration and blood smear for malaria parasite detection by microscopy. RESULTS: The average age and Hb concentration were 10.9 years (standard deviation, SD: ± 2.29) and 11.2 g/dl (SD: ± 1.39) respectively with 58.9% (n = 192) being females. The overall prevalence of infection with any of the parasites (single or coinfection) was 49.4% (n = 161, 95% confidence interval, CI [44.0-54.8]). The prevalence of malaria parasite species or Schistosoma mansoni was 32.0% (n = 104) and 25.2% (n = 82), respectively with 7.7% (n = 25) coinfection. The prevalence of anaemia in the cohort was 40.5% (95%CI [35.3-45.9]), of which 44.4% harboured at least one of the parasites. The prevalence of anaemia in malaria parasite spp or S. mansoni mono-infections was 41.8% and 38.6%, respectively and 64.0% in coinfections. There was no statistically significant difference in the odds of being anaemic in mono-infection with malaria (OR = 1.22, 95% CI 0.71-2.11, p = 0.47) or S. mansoni (OR = 1.07, 95% CI 0.58-1.99, p = 0.83) compared to those with no infection. However, the odds of being anaemic and coinfected with malaria parasite species and S. mansoni was 3.03 times higher compared to those with no infection (OR = 3.03, 95% CI 1.26-7.28, p = 0.013). Conclusion The data show a high burden of malaria, S. mansoni infection and anaemia among school children in the irrigation communities. The risk of anaemia was exacerbated by coinfections with malaria parasite(s) and S. mansoni. Targeted integrated interventions are recommended in this focal area of KNEM.


Assuntos
Anemia , Coinfecção , Criança , Feminino , Animais , Humanos , Masculino , Schistosoma mansoni , Coinfecção/epidemiologia , Plasmodium falciparum , Estudos Transversais , Anemia/epidemiologia
3.
Malar J ; 22(1): 271, 2023 Sep 14.
Artigo em Inglês | MEDLINE | ID: mdl-37710288

RESUMO

BACKGROUND: The routine surveillance of asymptomatic malaria using nucleic acid-based amplification tests is essential in obtaining reliable data that would inform malaria policy formulation and the implementation of appropriate control measures. METHODS: In this study, the prevalence rate and the dynamics of Plasmodium species among asymptomatic children (n = 1697) under 5 years from 30 communities within the Hohoe municipality in Ghana were determined. RESULTS AND DISCUSSION: The observed prevalence of Plasmodium parasite infection by polymerase chain reaction (PCR) was 33.6% (571/1697), which was significantly higher compared to that obtained by microscopy [26.6% (451/1697)] (P < 0.0001). Based on species-specific analysis by nested PCR, Plasmodium falciparum infection [33.6% (570/1697)] was dominant, with Plasmodium malariae, Plasmodium ovale and Plasmodium vivax infections accounting for 0.1% (1/1697), 0.0% (0/1697), and 0.0% (0/1697), respectively. The prevalence of P. falciparum infection among the 30 communities ranged from 0.0 to 82.5%. Following artesunate-amodiaquine (AS + AQ, 25 mg/kg) treatment of a sub-population of the participants (n = 184), there was a substantial reduction in Plasmodium parasite prevalence by 100% and 79.2% on day 7 based on microscopy and nested PCR analysis, respectively. However, there was an increase in parasite prevalence from day 14 to day 42, with a subsequent decline on day 70 by both microscopy and nested PCR. For parasite clearance rate analysis, we found a significant proportion of the participants harbouring residual Plasmodium parasites or parasite genomic DNA on day 1 [65.0% (13/20)], day 2 [65.0% (13/20)] and day 3 [60.0% (12/20)] after initiating treatment. Of note, gametocyte carriage among participants was low before and after treatment. CONCLUSION: Taken together, the results indicate that a significant number of individuals could harbour residual Plasmodium parasites or parasite genomic DNA after treatment. The study demonstrates the importance of routine surveillance of asymptomatic malaria using sensitive nucleic acid-based amplification techniques.


Assuntos
Artemisininas , Malária Falciparum , Malária , Ácidos Nucleicos , Criança , Humanos , Gana/epidemiologia , Malária/tratamento farmacológico , Malária/epidemiologia , Artemisininas/uso terapêutico , Malária Falciparum/tratamento farmacológico , Malária Falciparum/epidemiologia , Plasmodium malariae
4.
Mol Diagn Ther ; 27(5): 583-592, 2023 09.
Artigo em Inglês | MEDLINE | ID: mdl-37462793

RESUMO

INTRODUCTION: The true nature of the population spread of severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) in populations is often not fully known as most cases, particularly in Africa, are asymptomatic. Finding the true magnitude of SARS-CoV-2 spread is crucial to provide actionable data about the epidemiological progress of the disease for researchers and policymakers. This study developed and optimized an antibody enzyme-linked immunosorbent assay (ELISA) using recombinant nucleocapsid antigen expressed in-house using a simple bacterial expression system. METHODS: Nucleocapsid protein from SARS-CoV-2 was expressed and purified from Escherichia coli. Plasma samples used for the assay development were obtained from Ghanaian SARS-CoV-2 seropositive individuals during the pandemic, while seronegative controls were plasma samples collected from blood donors before the coronavirus disease 2019 (COVID-19) pandemic. Another set of seronegative controls was collected during the COVID-19 pandemic. Antibody detection and levels within the samples were validated using commercial kits and Luminex. Analyses were performed using GraphPad Prism, and the sensitivity, specificity and background cut-off were calculated. RESULTS AND DISCUSSION: This low-cost ELISA (£0.96/test) assay has a high prediction of 98.9%, and sensitivity and specificity of 97% and 99%, respectively. The assay was subsequently used to screen plasma from SARS-CoV-2 RT-PCR-positive Ghanaians. The assay showed no significant difference in nucleocapsid antibody levels between symptomatic and asymptomatic, with an increase of the levels over time. This is in line with our previous publication. CONCLUSION: This study developed a low-cost and transferable assay that enables highly sensitive and specific detection of human anti-SARS-CoV-2 IgG antibodies. This assay can be modified to include additional antigens and used for continuous monitoring of sero-exposure to SARS-CoV-2 in West Africa.


Assuntos
COVID-19 , Humanos , COVID-19/diagnóstico , COVID-19/epidemiologia , SARS-CoV-2 , Gana/epidemiologia , Pandemias , Nucleocapsídeo , Ensaio de Imunoadsorção Enzimática/métodos , Sensibilidade e Especificidade
6.
Microbiol Spectr ; 11(3): e0491622, 2023 06 15.
Artigo em Inglês | MEDLINE | ID: mdl-37093000

RESUMO

Malaria treatments resulted in the decline of the deadliest Plasmodium falciparum globally while species, such as P. ovale, infections have been increasingly detected across sub-Saharan Africa. Currently, no experimental drug sensitivity data are available to guide effective treatment and management of P. ovale infections, which is necessary for effective malaria elimination. We conducted a prospective study to evaluate P. ovale epidemiology over 1 year and determined ex vivo susceptibility of the field isolates to existing and lead advanced discovery antimalarial drugs. We report that while P. falciparum dominated both symptomatic and asymptomatic malaria cases, P. ovale in mono or co-infections caused 7.16% of symptomatic malaria. Frontline antimalarials artesunate and lumefantrine inhibited P. ovale as potently as P. falciparum. Chloroquine, which has been withdrawn in Ghana, was also highly inhibitory against both P. ovale and P. falciparum. In addition, P. ovale and P. falciparum displayed high susceptibility to quinine, comparable to levels observed with chloroquine. Pyrimethamine, which is a major drug for disease massive prevention, also showed great inhibition of P. ovale, comparable to effects on P. falciparum. Furthermore, we identified strong inhibition of P. ovale using GNF179, a close analogue of KAF156 imidazolopiperazines, which is a novel class of antimalarial drugs currently in clinical phase II testing. We further demonstrated that the Plasmodium phosphatidylinositol-4-OH kinase (PI4K)-specific inhibitor, KDU691, is highly inhibitory against P. ovale and P. falciparum field isolates. Our data indicated that existing and lead advanced discovery antimalarial drugs are suitable for the treatment of P. ovale infections in Ghana. IMPORTANCE Current malaria control and elimination tools such as drug treatments are not specifically targeting P.ovale. P. ovale can form hypnozoite and cause relapsing malaria. P. ovale is the third most dominant species in Africa and requires radical cure treatment given that it can form liver dormant forms called hypnozoites that escape all safe treatments. The inappropriate treatment of P. ovale would sustain its transmission in Africa where the medical need is the greatest. This is a hurdle for successful malaria control and elimination. Here, we provided experiment data that were lacking to guide P. ovale treatment and disease control policy makers using reference antimalarial drugs. We also provided key experimental data for 2 clinical candidate drugs that can be used for prioritization selection of lead candidate's identification for clinical development.


Assuntos
Antimaláricos , Malária Falciparum , Malária , Plasmodium ovale , Humanos , Antimaláricos/farmacologia , Antimaláricos/uso terapêutico , Plasmodium falciparum , Gana/epidemiologia , Estudos Prospectivos , Malária/epidemiologia , Malária Falciparum/tratamento farmacológico , Malária Falciparum/epidemiologia , Cloroquina/farmacologia , Cloroquina/uso terapêutico
7.
J Infect Dis ; 227(2): 179-182, 2023 01 11.
Artigo em Inglês | MEDLINE | ID: mdl-36416015

RESUMO

The endothelial protein C receptor (EPCR)-rs867186 G allele has been linked to high plasma levels of soluble EPCR (sEPCR) and controversially associated with either susceptibility or resistance to severe and cerebral malaria. In this study, quantitative enzyme-linked immunosorbent assay and sequencing were used to assess sEPCR levels and EPCR-rs867186 polymorphism in blood samples from Beninese children with different clinical presentations of malaria. Our findings show that sEPCR levels were higher at hospital admission than during convalescence and that EPCR-rs867186 G allele was associated with increased sEPCR plasma levels, malaria severity, and mortality rate (P < .001, P = .03, and P = .04, respectively), suggesting a role of sEPCR in the pathogenesis of severe malaria.


Assuntos
Malária Cerebral , Receptores de Superfície Celular , Humanos , Criança , Receptor de Proteína C Endotelial/genética , Polimorfismo Genético
8.
Electrochim Acta ; 429: 140988, 2022 Oct 10.
Artigo em Inglês | MEDLINE | ID: mdl-36225971

RESUMO

The absence of reliable species-specific diagnostic tools for malaria at point-of-care (POC) remains a major setback towards effective disease management. This is partly due to the limited sensitivity and specificity of the current malaria POC diagnostic kits especially in cases of low-density parasitaemia and mixed species infections. In this study, we describe the first label-free DNA-based genosensors based on electrochemical impedance spectroscopy (EIS) for species-specific detection of P. falciparum, P. malariae and P. ovale. The limits of detection (LOD) for the three species-specific genosensors were down in attomolar concentrations ranging from 18.7 aM to 43.6 aM, which is below the detection limits of previously reported malaria genosensors. More importantly, the diagnostic performance of the three genosensors were compared to quantitative real-time polymerase chain reaction (qPCR) assays using purified genomic DNA and the paired whole blood lysates from clinical samples. Remarkably, all the qPCR-positive purified genomic DNA samples were correctly identified by the genosensors indicating 100% sensitivity for each of the three malaria species. The specificities of the three genosensors ranged from 66.7% to 100.0% with a Therapeutic Turnaround Time (TTAT) within 30 min, which is comparable to the TTAT of current POC diagnostic tools for malaria. This work represents a significant step towards the development of accurate and rapid species-specific nucleic acid-based toolkits for the diagnosis of malaria at the POC.

9.
Front Cell Infect Microbiol ; 12: 997418, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-36204649

RESUMO

Ex vivo phenotyping of P. falciparum erythrocyte invasion diversity is important in the identification and down selection of potential malaria vaccine targets. However, due to the lack of appropriate laboratory facilities in remote areas of endemic countries, direct processing of P. falciparum clinical isolates is usually not feasible. Here, we investigated the combined effect of short-term cryopreservation and thawing processes on the ex vivo invasion phenotypes of P. falciparum isolates. Ex-vivo or in vitro invasion phenotyping assays were performed with P. falciparum clinical isolates prior to or following culture adaptation, respectively. All isolates were genotyped at Day 0 for parasite clonality. Subsequently, isolates that were successfully culture-adapted were genotyped again at Days 7, 15, 21, and 28-post adaptation. Invasion phenotyping assays were performed in isogenic isolates revived at different time points (3, 6, and 12 months) post-cryopreservation and the resulting data were compared to that from ex-vivo invasion data of matched isogenic parental isolates. We also show that short-term culture adaptation selects for parasite clonality and could be a driving force for variation in invasion phenotypes as compared to ex vivo data where almost all parasite clones of a given isolate are present. Interestingly, our data show little variation in the parasites' invasion phenotype following short-term cryopreservation. Altogether, our data suggest that short-term cryopreservation of uncultured P. falciparum clinical isolates is a reliable mechanism for storing parasites for future use.


Assuntos
Vacinas Antimaláricas , Malária Falciparum , Parasitos , Animais , Criopreservação , Eritrócitos/parasitologia , Malária Falciparum/parasitologia , Plasmodium falciparum/genética
10.
Front Immunol ; 13: 1009252, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-36211335

RESUMO

Background: Erythrocyte invasion by P. falciparum involves functionally overlapping interactions between the parasite's ligands and the erythrocyte surface receptors. While some P. falciparum isolates necessarily engage the sialic acid (SA) moieties of the erythrocytes during the invasion, others use ligands whose binding is independent of SA for successful invasion. Deciphering the major pathway used by P. falciparum clinical isolates represent a key step toward developing an efficient blood stage malaria vaccine. Methods: We collected a total of 156 malaria-infected samples from Ghanaian children aged 2 to 14 years and used a two-color flow cytometry-based invasion assay to assess the invasion phenotype diversity of Ghanaian P. falciparum clinical isolates. Anti-human CR1 antibodies were used to determine the relative contribution of the PfRh4-CR1 interaction in the parasites invasion phenotype and RT-qPCR was used to assess the expression levels of key invasion-related ligands. Results: Our findings show no clear association between demographic or clinical data and existing reports on the malaria transmission intensity. The complete invasion data obtained for 156 isolates, showed the predominance of SA-independent pathways in Ghanaian clinical isolates. Isolates from Hohoe and Navrongo had the highest diversity in invasion profile. Our data also confirmed that the PfRh4-CR1 mediated alternative pathway is important in Ghanaian clinical isolates. Furthermore, the transcript levels of ten invasion-related genes obtained in the study showed little variations in gene expression profiles within and between parasite populations across sites. Conclusion: Our data suggest a low level of phenotypic diversity in Ghanaian clinical isolates across areas of varying endemicity and further highlight its importance in the quest for new intervention strategies, such as the investigation of blood-stage vaccine targets, particularly those targeting specific pathways and able to trigger the stimulation of broadly neutralizing invasion antibodies.


Assuntos
Vacinas Antimaláricas , Malária Falciparum , Parasitos , Animais , Gana/epidemiologia , Ligantes , Ácido N-Acetilneuramínico/metabolismo , Fenótipo , Plasmodium falciparum , Proteínas de Protozoários
11.
Front Microbiol ; 13: 998182, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-36312941

RESUMO

Recurrent epidemics of cholera denote robust adaptive mechanisms of Vibrio cholerae for ecological shifting and persistence despite variable stress conditions. Tracking the evolution of pathobiological traits requires comparative genomic studies of isolates from endemic areas. Here, we investigated the genetic differentiation among V. cholerae clinical and environmental isolates by highlighting the genomic divergence associated with gene decay, genome plasticity, and the acquisition of virulence and adaptive traits. The clinical isolates showed high phylogenetic relatedness due to a higher frequency of shared orthologs and fewer gene variants in contrast to the evolutionarily divergent environmental strains. Divergence of the environmental isolates is linked to extensive genomic rearrangements in regions containing mobile genetic elements resulting in numerous breakpoints, relocations, and insertions coupled with the loss of virulence determinants acf, zot, tcp, and ctx in the genomic islands. Also, four isolates possessed the CRISPR-Cas systems with spacers specific for Vibrio phages and plasmids. Genome synteny and homology analysis of the CRISPR-Cas systems suggest horizontal acquisition. The marked differences in the distribution of other phage and plasmid defense systems such as Zorya, DdmABC, DdmDE, and type-I Restriction Modification systems among the isolates indicated a higher propensity for plasmid or phage disseminated traits in the environmental isolates. Our results reveal that V. cholerae strains undergo extensive genomic rearrangements coupled with gene acquisition, reflecting their adaptation during ecological shifts and pathogenicity.

12.
Anal Bioanal Chem ; 414(21): 6309-6326, 2022 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-35657389

RESUMO

Bacillus stearothermophilus large fragment (BSTLF) DNA polymerase is reported, isolated on silica via a fused R5 silica-affinity peptide and used in nucleic acid diagnostics. mCherry (mCh), included in the fusion construct, was shown as an efficient fluorescent label to follow the workflow from gene to diagnostic. The R5 immobilisation on silica from cell lysate was consistent with cooperative R5-specific binding of R52-mCh-FL-BSTLF or R52-mCh-H10-BSTLF fusion proteins followed by non-specific protein binding (including E. coli native proteins). Higher R5-binding could be achieved in the presence of phosphate, but phosphate residue reduced loop-mediated isothermal amplification (LAMP) performance, possibly blocking sites on the BSTLF for binding of ß- and γ-phosphates of the dNTPs. Quantitative assessment showed that cations (Mg2+ and Mn2+) that complex the PPi product optimised enzyme activity. In malaria testing, the limit of detection depended on Plasmodium species and primer set. For example, 1000 copies of P. knowlesi 18S rRNA could be detected with the P.KNO-LAU primer set with Si-R52-mCh-FL-BSTLF , but 10 copies of P. ovale 18S rRNA could be detected with the P.OVA-HAN primer set using the same enzyme. The Si-immobilised BSTLF outperformed the commercial enzyme for four of the nine Plasmodium LAMP primer sets tested. Si-R52-mCh-FL-BSTLF production was transferred from Cambridge to Accra and set up de novo for a trial with clinical samples. Different detection limits were found, targeting the mitochondrial DNA or the 18S rRNA gene for P. falciparum. The results are discussed in comparison with qPCR and sampling protocol and show that the Si-BSTLF polymerase can be optimised to meet the WHO recommended guidelines.


Assuntos
Malária Falciparum , Malária , Plasmodium , Escherichia coli/genética , Humanos , Malária/diagnóstico , Técnicas de Diagnóstico Molecular , Técnicas de Amplificação de Ácido Nucleico/métodos , Fosfatos , Plasmodium/genética , RNA Ribossômico 18S/genética , Sensibilidade e Especificidade , Dióxido de Silício
13.
Malar J ; 21(1): 115, 2022 Apr 04.
Artigo em Inglês | MEDLINE | ID: mdl-35379236

RESUMO

BACKGROUND: Cytoadhesion and sequestration of Plasmodium falciparum infected red blood cells (iRBC) in the microvasculature of vital organs are a major cause of malaria pathology. Several studies have provided evidence on the implication of the human host intercellular adhesion molecule-1 (ICAM-1) as a major receptor for iRBCs binding to P. falciparum erythrocyte membrane protein 1 (PfEMP1) in the development of severe and cerebral malaria. The genetic polymorphism K29M in the immunoglobulin-like domain of ICAM-1, known as ICAM-1Kilifi, has been associated with either increased or decreased risk of developing cerebral malaria. METHODS: To provide more conclusive results, the genetic polymorphism of ICAM-1Kilifi was assessed by PCR and sequencing in blood samples from 215 Beninese children who presented with either mild or severe malaria including cerebral malaria. RESULTS AND CONCLUSIONS: The results showed that in this cohort of Beninese children, the ICAM-1kilifi variant is present at the frequencies of 0.27, similar to the frequency observed in other African countries. This ICAM-1kilifi variant was not associated with disease severity in agreement with other findings from the Gambia, Tanzania, Malawi, Gabon, and Thailand, suggesting no evidence of a direct link between this polymorphism and the pathogenesis of severe and cerebral malaria.


Assuntos
Malária Cerebral , Malária Falciparum , Criança , Humanos , Molécula 1 de Adesão Intercelular/genética , Molécula 1 de Adesão Intercelular/metabolismo , Malaui , Plasmodium falciparum
14.
ACS Infect Dis ; 7(11): 3025-3033, 2021 11 12.
Artigo em Inglês | MEDLINE | ID: mdl-34711047

RESUMO

In vitro and ex vivo cultivation of Plasmodium (P) falciparum has facilitated active research into the malaria parasite toward the quest for basic knowledge and the discovery of effective drug treatments. Such a drug discovery program is currently difficult for P. malariae simply because of the absence of in vitro and ex vivo cultivation system for its asexual blood stages supporting antimalarial evaluation. Despite availability of artemisinin combination therapies effective on P. falciparum, P. malariae is being increasingly detected in malaria endemic countries. P. malariae is responsible for chronic infections and is associated with a high burden of anemia and morbidity. Here, we optimized and adapted ex vivo conditions under which P. malariae can be cultured and used for screening antimalarial drugs. Subsequently, this enabled us to test compounds such as artemether, chloroquine, lumefantrine, and quinine for ex vivo antimalarial activity against P. malariae.


Assuntos
Antimaláricos , Malária Falciparum , Antimaláricos/farmacologia , Humanos , Lumefantrina/uso terapêutico , Malária Falciparum/tratamento farmacológico , Plasmodium falciparum , Plasmodium malariae
15.
J Mol Diagn ; 23(10): 1393-1403, 2021 10.
Artigo em Inglês | MEDLINE | ID: mdl-34425259

RESUMO

Plasmodium malariae and Plasmodium ovale are increasingly gaining public health attention as the global transmission of falciparum malaria is decreasing. However, the absence of reliable Plasmodium species-specific detection tools has hampered accurate diagnosis of these minor Plasmodium species. In this study, SYBR Green-based real-time PCR assays were developed for the detection of P. malariae and P. ovale using cooperative primers that significantly limit the formation and propagation of primers-dimers. Both the P. malariae and P. ovale cooperative primer-based assays had at least 10-fold lower detection limit compared with the corresponding conventional primer-based assays. More important, the cooperative primer-based assays were evaluated in a cross-sectional study using 560 samples obtained from two health facilities in Ghana. The prevalence rates of P. malariae and P. ovale among the combined study population were 18.6% (104/560) and 5.5% (31/560), respectively. Among the Plasmodium-positive cases, P. malariae and P. ovale mono-infections were 3.6% (18/499) and 1.0% (5/499), respectively, with the remaining being co-infections with Plasmodium falciparum. The study demonstrates the public health importance of including detection tools with lower detection limits in routine diagnosis and surveillance of nonfalciparum species. This will be necessary for comprehensively assessing the effectiveness of malaria interventions and control measures aimed toward global malaria elimination.


Assuntos
Coinfecção/diagnóstico , Primers do DNA/genética , Malária Falciparum/diagnóstico , Plasmodium falciparum/genética , Plasmodium malariae/genética , Plasmodium ovale/genética , Reação em Cadeia da Polimerase em Tempo Real/métodos , Adolescente , Adulto , Criança , Pré-Escolar , Coinfecção/epidemiologia , Coinfecção/parasitologia , Estudos Transversais , Feminino , Gana/epidemiologia , Humanos , Limite de Detecção , Malária Falciparum/epidemiologia , Malária Falciparum/parasitologia , Masculino , Prevalência , RNA Ribossômico 18S/genética , Adulto Jovem
16.
Pathogens ; 10(7)2021 Jul 13.
Artigo em Inglês | MEDLINE | ID: mdl-34358039

RESUMO

Malaria, which is caused by Plasmodium parasites through Anopheles mosquito transmission, remains one of the most life-threatening diseases affecting hundreds of millions of people worldwide every year. Plasmodium vivax, which accounts for the majority of cases of recurring malaria caused by the Plasmodium (non-Laverania) subgenus, is an ancient and continuing zoonosis originating from monkey hosts probably outside Africa. The emergence of other zoonotic malarias (P. knowlesi, P. cynomolgi, and P. simium) further highlights the seriousness of the disease. The severity of this epidemic disease is dependent on many factors, including the parasite characteristics, host-parasite interactions, and the pathology of the infection. Successful infection depends on the ability of the parasite to invade the host; however, little is known about the parasite invasion biology and mechanisms. The lack of this information adds to the challenges to malaria control and elimination, hence enhancing the potential for continuation of this zoonosis. Here, we review the literature describing the characteristics, distribution, and genome details of the parasites, as well as host specificity, host-parasite interactions, and parasite pathology. This information will provide the basis of a greater understanding of the epidemiology and pathogenesis of malaria to support future development of strategies for the control and prevention of this zoonotic infection.

17.
J Antimicrob Chemother ; 76(8): 2079-2087, 2021 07 15.
Artigo em Inglês | MEDLINE | ID: mdl-34021751

RESUMO

OBJECTIVES: To evaluate Plasmodium malariae susceptibility to current and lead candidate antimalarial drugs. METHODS: We conducted cross-sectional screening and detection of all Plasmodium species malaria cases, which were nested within a longitudinal prospective study, and an ex vivo assessment of efficacy of a panel of antimalarials against P. malariae and Plasmodium falciparum, both PCR-confirmed mono-infections. Reference compounds tested included chloroquine, lumefantrine, artemether and piperaquine, while candidate antimalarials included the imidazolopiperazine GNF179, a close analogue of KAF156, and the Plasmodium phosphatidylinositol-4-OH kinase (PI4K)-specific inhibitor KDU691. RESULTS: We report a high frequency (3%-15%) of P. malariae infections with a significant reduction in ex vivo susceptibility to chloroquine, lumefantrine and artemether, which are the current frontline drugs against P. malariae infections. Unlike these compounds, potent inhibition of P. malariae and P. falciparum was observed with piperaquine exposure. Furthermore, we evaluated advanced lead antimalarial compounds. In this regard, we identified strong inhibition of P. malariae using GNF179, a close analogue of KAF156 imidazolopiperazines, which is a novel class of antimalarial drug currently in clinical Phase IIb testing. Finally, in addition to GNF179, we demonstrated that the Plasmodium PI4K-specific inhibitor KDU691 is highly inhibitory against P. malariae and P. falciparum. CONCLUSIONS: Our data indicated that chloroquine, lumefantrine and artemether may not be suitable for the treatment of P. malariae infections and the potential of piperaquine, as well as new antimalarials imidazolopiperazines and PI4K-specific inhibitor, for P. malariae cure.


Assuntos
Antimaláricos , Artemisininas , Malária Falciparum , Antimaláricos/farmacologia , Antimaláricos/uso terapêutico , Artemisininas/uso terapêutico , Estudos Transversais , Humanos , Malária Falciparum/tratamento farmacológico , Mali , Plasmodium falciparum , Plasmodium malariae , Estudos Prospectivos
18.
Sci Rep ; 11(1): 7129, 2021 03 29.
Artigo em Inglês | MEDLINE | ID: mdl-33782439

RESUMO

Human erythrocytes are indispensable for Plasmodium falciparum development. Unlike other eukaryotic cells, there is no existing erythroid cell line capable of supporting long-term P. falciparum in vitro experiments. Consequently, invasion phenotyping experiments rely on erythrocytes of different individuals. However, the contribution of the erythrocytes variation in influencing invasion rates remains unknown, which represents a challenge for conducting large-scale comparative studies. Here, we used erythrocytes of different blood groups harboring different hemoglobin genotypes to assess the relative contribution of blood donor variability in P. falciparum invasion phenotyping assays. For each donor, we investigated the relationship between parasite invasion phenotypes and erythrocyte phenotypic characteristics, including the expression levels of surface receptors (e.g. the human glycophorins A and C, the complement receptor 1 and decay accelerating factor), blood groups (e.g. ABO/Rh system), and hemoglobin genotypes (e.g. AA, AS and AC). Across all donors, there were significant differences in invasion efficiency following treatment with either neuraminidase, trypsin or chymotrypsin relative to the control erythrocytes. Primarily, we showed that the levels of key erythrocyte surface receptors and their sensitivity to enzyme treatment significantly differed across donors. However, invasion efficiency did not correlate with susceptibility to enzyme treatment or with the levels of the selected erythrocyte surface receptors. Furthermore, we found no relationship between P. falciparum invasion phenotype and blood group or hemoglobin genotype. Altogether, our findings demonstrate the need to consider erythrocyte donor uniformity and anticipate challenges associated with blood donor variability in early stages of large-scale study design.


Assuntos
Doadores de Sangue , Plasmodium falciparum/patogenicidade , Humanos , Fenótipo
19.
Front Immunol ; 11: 505, 2020.
Artigo em Inglês | MEDLINE | ID: mdl-32318061

RESUMO

Understanding the functional role of proteins expressed by Plasmodium falciparum is an important step toward unlocking potential targets for the development of therapeutic or diagnostic interventions. The armadillo (ARM) repeat protein superfamily is associated with varied functions across the eukaryotes. Therefore, it is important to understand the role of members of this protein family in Plasmodium biology. The Plasmodium falciparum armadillo repeats only (PfARO; Pf3D7_0414900) and P. falciparum merozoite organizing proteins (PfMOP; Pf3D7_0917000) are armadillo-repeat containing proteins previously characterized in P. falciparum. Here, we describe the characterization of another ARM repeat-containing protein in P. falciparum, which we have named the P. falciparum Merozoites-Associated Armadillo repeats protein (PfMAAP). Antibodies raised to three different synthetic peptides of PfMAAP show apical staining of free merozoites and those within the mature infected schizont. We also demonstrate that the antibodies raised to the PfMAAP peptides inhibited invasion of erythrocytes by merozoites from different parasite isolates. In addition, naturally acquired human antibodies to the N- and C- termini of PfMAAP are associated with a reduced risk of malaria in a prospective cohort analysis.


Assuntos
Proteínas do Domínio Armadillo/metabolismo , Eritrócitos/imunologia , Malária Falciparum/metabolismo , Peptídeos/metabolismo , Plasmodium falciparum/imunologia , Proteínas de Protozoários/metabolismo , Animais , Anticorpos Antiprotozoários/sangue , Proteínas do Domínio Armadillo/genética , Estudos de Coortes , Eritrócitos/parasitologia , Humanos , Imunidade Humoral , Malária Falciparum/transmissão , Merozoítos , Peptídeos/genética , Estudos Prospectivos , Transporte Proteico , Proteínas de Protozoários/genética , Esquizontes
20.
Sci Rep ; 10(1): 1498, 2020 01 30.
Artigo em Inglês | MEDLINE | ID: mdl-32001728

RESUMO

Despite significant progress in controlling malaria, the disease remains a global health burden. The intricate interactions the parasite Plasmodium falciparum has with its host allows it to grow and multiply in human erythrocytes. The mechanism by which P. falciparum merozoites invade human erythrocytes is complex, involving merozoite proteins as well as erythrocyte surface proteins. Members of the P. falciparum reticulocyte binding-like protein homolog (PfRh) family of proteins play a pivotal role in merozoite invasion and hence are important targets of immune responses. Domains within the PfRh2b protein have been implicated in its ability to stimulate natural protective antibodies in patients. More specifically, a 0.58 kbp deletion, at the C-terminus has been reported in high frequencies in Senegalese and Southeast Asian parasite populations, suggesting a possible role in immune evasion. We analysed 1218 P. falciparum clinical isolates, and the results show that this deletion is present in Ghanaian parasite populations (48.5% of all isolates), with Kintampo (hyper-endemic, 53.2%), followed by Accra (Hypo-endemic, 50.3%), Cape Coast (meso-endemic, 47.9%) and Sogakope (meso-endemic, 43.15%). Further analysis of parasite genomes stored in the MalariaGEN database revealed that the deletion variant was common across transmission areas globally, with an overall frequency of about 27.1%. Interestingly, some parasite isolates possessed mixed PfRh2b deletion and full-length alleles. We further showed that levels of antibodies to the domain of PfRh2 protein were similar to antibody levels of PfRh5, indicating it is less recognized by the immune system.


Assuntos
Malária Falciparum/parasitologia , Plasmodium falciparum/genética , Proteínas de Protozoários/genética , Adolescente , Adulto , Idoso , Sequência de Aminoácidos , Animais , Anticorpos Antiprotozoários/sangue , Proteínas de Transporte/química , Proteínas de Transporte/genética , Proteínas de Transporte/imunologia , Criança , Pré-Escolar , Estudos de Coortes , Estudos Transversais , Eritrócitos/parasitologia , Feminino , Dosagem de Genes , Duplicação Gênica , Genes de Protozoários , Gana/epidemiologia , Interações Hospedeiro-Parasita/genética , Interações Hospedeiro-Parasita/imunologia , Humanos , Evasão da Resposta Imune/genética , Lactente , Malária Falciparum/epidemiologia , Malária Falciparum/transmissão , Masculino , Merozoítos/genética , Merozoítos/imunologia , Pessoa de Meia-Idade , Plasmodium falciparum/imunologia , Domínios Proteicos , Proteínas de Protozoários/química , Proteínas de Protozoários/imunologia , Deleção de Sequência , Homologia de Sequência de Aminoácidos , Adulto Jovem
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...