Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 7 de 7
Filtrar
Mais filtros










Intervalo de ano de publicação
1.
Preprint em Inglês | bioRxiv | ID: ppbiorxiv-508962

RESUMO

Inhibitors of bromodomain and extra-terminal proteins (iBETs), including JQ-1, have been suggested as potential therapeutics against SARS-CoV-2 infection. However, molecular mechanisms underlying JQ-1-induced antiviral activity and its susceptibility to viral antagonism remain incompletely understood. iBET treatment transiently inhibited infection by SARS-CoV-2 variants and SARS-CoV, but not MERS-CoV. Our functional assays confirmed JQ-1-mediated downregulation of ACE2 expression and multi-omics analysis uncovered induction of an antiviral NRF-2-mediated cytoprotective response as an additional antiviral component of JQ-1 treatment. Serial passaging of SARS-CoV-2 in the presence of JQ-1 resulted in predominance of ORF6-deficient variants. JQ-1 antiviral activity was transient in human bronchial airway epithelial cells (hBAECs) treated prior to infection and absent when administered therapeutically. We propose that JQ-1 exerts pleiotropic effects that collectively induce a transient antiviral state that is ultimately nullified by an established SARS-CoV-2 infection, raising questions on their clinical suitability in the context of COVID-19.

2.
Preprint em Inglês | bioRxiv | ID: ppbiorxiv-480527

RESUMO

Cell-intrinsic responses mounted in vivo in PBMCs during mild and severe COVID-19 differ quantitatively and qualitatively. Whether they are triggered by signals emitted by productively infected cells of the respiratory tract or are, at least partially, resulting from physical interaction with virus particles, remains unclear. Here, we analyzed susceptibility and expression profiles of PBMCs from healthy donors upon ex vivo exposure to SARS-CoV and SARS-CoV-2. In line with the absence of detectable ACE2 receptor expression, human PBMCs were refractory to productive infection. Bulk and single cell RNA-sequencing revealed JAK/STAT-dependent induction of interferon-stimulated genes, but not pro-inflammatory cytokines. This SARS-CoV-2-specific response was most pronounced in monocytes. SARS-CoV-2-RNA-positive monocytes displayed a lower ISG signature as compared to bystander cells of the identical culture. This suggests a preferential invasion of cells with a low ISG base-line profile or delivery of a SARS-CoV-2-specific sensing antagonist upon efficient particle internalization. Together, non-productive physical interaction of PBMCs with SARS-CoV-2-but not SARS-CoV particles stimulates JAK/STAT-dependent, monocyte-accentuated innate immune responses that resemble those detected in vivo in patients with mild COVID-19.

3.
Preprint em Inglês | bioRxiv | ID: ppbiorxiv-465121

RESUMO

Epidemiological data demonstrate that SARS-CoV-2 variants of concern (VOC) B.1.1.7 and B.1.617.2 are more transmissible and infections are associated with a higher mortality than non-VOC virus infections. Phenotypic properties underlying their enhanced spread in the human population remain unknown. B.1.1.7 virus isolates displayed inferior or equivalent spread in most cell lines and primary cells compared to an ancestral B.1 SARS-CoV-2, and were outcompeted by the latter. Lower infectivity and delayed entry kinetics of B.1.1.7 viruses were accompanied by inefficient proteolytic processing of spike. B.1.1.7 viruses failed to escape from neutralizing antibodies, but slightly dampened induction of innate immunity. The bronchial cell line NCI-H1299 supported 24- and 595-fold increased growth of B.1.1.7 and B.1.617.2 viruses, respectively, in the absence of detectable ACE2 expression and in a spike-determined fashion. Superior spread in NCI-H1299 cells suggests that VOCs employ a distinct set of cellular cofactors that may be unavailable in standard cell lines.

4.
Preprint em Inglês | bioRxiv | ID: ppbiorxiv-252320

RESUMO

The emergence of SARS-CoV-2 led to pandemic spread of coronavirus disease 2019 (COVID-19), manifesting with respiratory symptoms and multi-organ dysfunction. Detailed characterization of virus-neutralizing antibodies and target epitopes is needed to understand COVID-19 pathophysiology and guide immunization strategies. Among 598 human monoclonal antibodies (mAbs) from ten COVID-19 patients, we identified 40 strongly neutralizing mAbs. The most potent mAb CV07-209 neutralized authentic SARS-CoV-2 with IC50 of 3.1 ng/ml. Crystal structures of two mAbs in complex with the SARS-CoV-2 receptor-binding domain at 2.55 and 2.70 [A] revealed a direct block of ACE2 attachment. Interestingly, some of the near-germline SARS-CoV-2 neutralizing mAbs reacted with mammalian self-antigens. Prophylactic and therapeutic application of CV07-209 protected hamsters from SARS-CoV-2 infection, weight loss and lung pathology. Our results show that non-self-reactive virus-neutralizing mAbs elicited during SARS-CoV-2 infection are a promising therapeutic strategy.

5.
Preprint em Inglês | medRxiv | ID: ppmedrxiv-20181206

RESUMO

BackgroundAccurate estimates of SARS-CoV-2 seroprevalence are crucial for the implementation of effective public health measures, but are currently largely lacking in regions with low infection rates. This is further complicated by inadequate test performance of many widely used serological assays. We therefore aimed to assess SARS-CoV-2 seroprevalence in a region with low COVID-19 burden, especially focusing on neutralizing antibodies that presumably constitute a major component of acquired immunity. MethodsWe invited all individuals who were enrolled in the Rhineland Study, an ongoing community-based prospective cohort study in people aged 30 years and above in the city of Bonn, Germany (N=5427). Between April 24th and June 30th, 2020, 4771 (88%) of these individuals participated in the serosurvey. Anti-SARS-CoV-2 IgG levels were measured using an ELISA assay, and all positive or borderline results were subsequently examined through both a recombinant immunofluorescent assay and a plaque reduction neutralisation test (PRNT). FindingsSeroprevalence was 0{middle dot}97% (95% CI: 0{middle dot}72-1{middle dot}30) by ELISA and 0{middle dot}36% (95% CI: 0{middle dot}21-0{middle dot}61) by PRNT, and did not vary with either age or sex. All PRNT+ individuals reported having experienced at least one symptom (odds ratio (OR) of PRNT+ for each additional symptom: 1{middle dot}12 (95% CI: 1{middle dot}04-1{middle dot}21)). Apart from living in a household with a SARS-CoV-2 confirmed or suspected person, a recent history of reduced taste or smell, fever, chills/hot flashes, pain while breathing, pain in arms/legs, as well as muscle pain and weakness were significantly associated with the presence of neutralizing antibodies in those with mild to moderate infection (ORs 3{middle dot}44 to 9{middle dot}97, all p<0{middle dot}018). InterpretationOur findings indicate a relatively low SARS-CoV-2 seroprevalence in Bonn, Germany (until June 30th, 2020), with neutralizing antibodies detectable in only one third of those with a positive immunoassay result, implying that almost the entire population in this region remains susceptible to SARS-CoV-2 infection. FundingThe Rhineland Study is predominantly funded through the German Center for Neurodegenerative Diseases (DZNE) by the Federal Ministry of Education and Research (BMBF) and the Ministry of Culture and Science of the German State of North Rhine-Westphalia. The National Consultant Laboratory for Coronaviruses is funded by the Federal Ministry of Health (BMG). No additional funding was received for this seroprevalence study.

6.
Preprint em Inglês | bioRxiv | ID: ppbiorxiv-079194

RESUMO

The coronavirus disease 2019 (COVID-19) pandemic, caused by the novel severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2), is an ongoing global health threat with more than two million infected people since its emergence in late 2019. Detailed knowledge of the molecular biology of the infection is indispensable for understanding of the viral replication, host responses, and disease progression. We provide gene expression profiles of SARS-CoV and SARS-CoV-2 infections in three human cell lines (H1299, Caco-2 and Calu-3 cells), using bulk and single-cell transcriptomics. Small RNA profiling showed strong expression of the immunity and inflammation-associated microRNA miRNA-155 upon infection with both viruses. SARS-CoV-2 elicited approximately two-fold higher stimulation of the interferon response compared to SARS-CoV in the permissive human epithelial cell line Calu-3, and induction of cytokines such as CXCL10 or IL6. Single cell RNA sequencing data showed that canonical interferon stimulated genes such as IFIT2 or OAS2 were broadly induced, whereas interferon beta (IFNB1) and lambda (IFNL1-4) were expressed only in a subset of infected cells. In addition, temporal resolution of transcriptional responses suggested interferon regulatory factors (IRFs) activities precede that of nuclear factor-{kappa}B (NF-{kappa}B). Lastly, we identified heat shock protein 90 (HSP90) as a protein relevant for the infection. Inhibition of the HSP90 charperone activity by Tanespimycin/17-N-allylamino-17-demethoxygeldanamycin (17-AAG) resulted in a reduction of viral replication, and of TNF and IL1B mRNA levels. In summary, our study established in vitro cell culture models to study SARS-CoV-2 infection and identified HSP90 protein as potential drug target for therapeutic intervention of SARS-CoV-2 infection.

7.
Preprint em Inglês | bioRxiv | ID: ppbiorxiv-997254

RESUMO

Severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) poses an acute threat to public health and the world economy, especially because no approved specific drugs or vaccines are available. Pharmacological modulation of metabolism-dependent cellular pathways such as autophagy reduced propagation of highly pathogenic Middle East respiratory syndrome (MERS)-CoV. Here we show that SARS-CoV-2 infection limits autophagy by interfering with multiple metabolic pathways and that compound-driven interventions aimed at autophagy induction reduce SARS-CoV-2 propagation in vitro. In-depth analyses of autophagy signaling and metabolomics indicate that SARS-CoV-2 reduces glycolysis and protein translation by limiting activation of AMP-protein activated kinase (AMPK) and mammalian target of rapamycin complex 1 (mTORC1). Infection also downregulates autophagy-inducing spermidine, and facilitates AKT1/SKP2-dependent degradation of autophagy-initiating Beclin-1 (BECN1). Targeting of these pathways by exogenous administration of spermidine, AKT inhibitor MK-2206, and the Beclin-1 stabilizing, antihelminthic drug niclosamide inhibited SARS-CoV-2 propagation by 85, 88, and >99%, respectively. In sum, SARS-CoV-2 infection causally diminishes autophagy. A clinically approved and well-tolerated autophagy-inducing compound shows potential for evaluation as a treatment against SARS-CoV-2.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...