Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 8 de 8
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
bioRxiv ; 2024 Feb 28.
Artigo em Inglês | MEDLINE | ID: mdl-38464029

RESUMO

OBJECTIVE: Intraductal Papillary Mucinous Neoplasms (IPMNs) are cystic lesions and bona fide precursors for pancreatic ductal adenocarcinoma (PDAC). Recently, we showed that acinar to ductal metaplasia, an injury repair program, is characterized by a transcriptomic program similar to gastric spasmolytic polypeptide expressing metaplasia (SPEM), suggesting common mechanisms of reprogramming between the stomach and pancreas. The aims of this study were to assay IPMN for pyloric markers and to identify molecular drivers of this program. DESIGN: We analyzed RNA-seq studies of IPMN for pyloric markers, which were validated by immunostaining in patient samples. Cell lines expressing Kras G12D +/- GNAS R201C were manipulated to identify distinct and overlapping transcriptomic programs driven by each oncogene. A PyScenic-based regulon analysis was performed to identify molecular drivers in the pancreas. Expression of candidate drivers was evaluated by RNA-seq and immunostaining. RESULTS: Pyloric markers were identified in human IPMN. GNAS R201C drove expression of these markers in cell lines and siRNA targeting of GNAS R201C or Kras G12D demonstrates that GNAS R201C amplifies a mucinous, pyloric phenotype. Regulon analysis identified a role for transcription factors SPDEF, CREB3L1, and CREB3L4, which are expressed in patient samples. siRNA-targeting of Spdef inhibited mucin production. CONCLUSION: De novo expression of a SPEM phenotype has been identified in pancreatitis and a pyloric phenotype in Kras G12D -driven PanIN and Kras G12D ;GNAS R201C -driven IPMN, suggesting common mechanisms of reprogramming between these lesions and the stomach. A transition from a SPEM to pyloric phenotype may reflect disease progression and/or oncogenic mutation. IPMN-specific GNAS R201C amplifies a mucinous phenotype, in part, through SPDEF.

2.
J Biol Chem ; 299(10): 105217, 2023 10.
Artigo em Inglês | MEDLINE | ID: mdl-37660914

RESUMO

Aberrant glycosylation is a hallmark of a cancer cell. One prevalent alteration is an enrichment in α2,6-linked sialylation of N-glycosylated proteins, a modification directed by the ST6GAL1 sialyltransferase. ST6GAL1 is upregulated in many malignancies including ovarian cancer. Prior studies have shown that the addition of α2,6 sialic acid to the epidermal growth factor receptor (EGFR) activates this receptor, although the mechanism was largely unknown. To investigate the role of ST6GAL1 in EGFR activation, ST6GAL1 was overexpressed in the OV4 ovarian cancer line, which lacks endogenous ST6GAL1, or knocked-down in the OVCAR-3 and OVCAR-5 ovarian cancer lines, which have robust ST6GAL1 expression. Cells with high expression of ST6GAL1 displayed increased activation of EGFR and its downstream signaling targets, AKT and NFκB. Using biochemical and microscopy approaches, including total internal reflection fluorescence microscopy, we determined that the α2,6 sialylation of EGFR promoted its dimerization and higher order oligomerization. Additionally, ST6GAL1 activity was found to modulate EGFR trafficking dynamics following EGF-induced receptor activation. Specifically, EGFR sialylation enhanced receptor recycling to the cell surface following activation while simultaneously inhibiting lysosomal degradation. 3D widefield deconvolution microscopy confirmed that in cells with high ST6GAL1 expression, EGFR exhibited greater colocalization with Rab11 recycling endosomes and reduced colocalization with LAMP1-positive lysosomes. Collectively, our findings highlight a novel mechanism by which α2,6 sialylation promotes EGFR signaling by facilitating receptor oligomerization and recycling.


Assuntos
Receptores ErbB , beta-D-Galactosídeo alfa 2-6-Sialiltransferase , Humanos , beta-D-Galactosídeo alfa 2-6-Sialiltransferase/genética , beta-D-Galactosídeo alfa 2-6-Sialiltransferase/metabolismo , Linhagem Celular Tumoral , Receptores ErbB/genética , Receptores ErbB/metabolismo , Neoplasias Ovarianas/fisiopatologia , Transdução de Sinais , Transporte Proteico/genética , Ligação Proteica
3.
bioRxiv ; 2023 Jun 04.
Artigo em Inglês | MEDLINE | ID: mdl-37398202

RESUMO

Aberrant glycosylation is a hallmark of a cancer cell. One prevalent alteration is an enrichment in α2,6-linked sialylation of N-glycosylated proteins, a modification directed by the ST6GAL1 sialyltransferase. ST6GAL1 is upregulated in many malignancies including ovarian cancer. Prior studies have shown that the addition of α2,6 sialic acid to the Epidermal Growth Factor Receptor (EGFR) activates this receptor, although the mechanism was largely unknown. To investigate the role of ST6GAL1 in EGFR activation, ST6GAL1 was overexpressed in the OV4 ovarian cancer line, which lacks endogenous ST6GAL1, or knocked down in the OVCAR-3 and OVCAR-5 ovarian cancer lines, which have robust ST6GAL1 expression. Cells with high expression of ST6GAL1 displayed increased activation of EGFR and its downstream signaling targets, AKT and NFκB. Using biochemical and microscopy approaches, including Total Internal Reflection Fluorescence (TIRF) microscopy, we determined that the α2,6 sialylation of EGFR promoted its dimerization and higher order oligomerization. Additionally, ST6GAL1 activity was found to modulate EGFR trafficking dynamics following EGF-induced receptor activation. Specifically, EGFR sialylation enhanced receptor recycling to the cell surface following activation while simultaneously inhibiting lysosomal degradation. 3D widefield deconvolution microscopy confirmed that in cells with high ST6GAL1 expression, EGFR exhibited greater co-localization with Rab11 recycling endosomes and reduced co-localization with LAMP1-positive lysosomes. Collectively, our findings highlight a novel mechanism by which α2,6 sialylation promotes EGFR signaling by facilitating receptor oligomerization and recycling.

4.
Glycobiology ; 33(8): 626-636, 2023 10 06.
Artigo em Inglês | MEDLINE | ID: mdl-37364046

RESUMO

The ST6GAL1 sialyltransferase, which adds α2-6-linked sialic acids to N-glycosylated proteins, is upregulated in many malignancies including ovarian cancer. Through its activity in sialylating select surface receptors, ST6GAL1 modulates intracellular signaling to regulate tumor cell phenotype. ST6GAL1 has previously been shown to act as a survival factor that protects cancer cells from cytotoxic stressors such as hypoxia. In the present study, we investigated a role for ST6GAL1 in tumor cell metabolism. ST6GAL1 was overexpressed (OE) in OV4 ovarian cancer cells, which have low endogenous ST6GAL1, or knocked-down (KD) in ID8 ovarian cancer cells, which have high endogenous ST6GAL1. OV4 and ID8 cells with modulated ST6GAL1 expression were grown under normoxic or hypoxic conditions, and metabolism was assessed using Seahorse technology. Results showed that cells with high ST6GAL1 expression maintained a higher rate of oxidative metabolism than control cells following treatment with the hypoxia mimetic, desferrioxamine (DFO). This enrichment was not due to an increase in mitochondrial number. Glycolytic metabolism was also increased in OV4 and ID8 cells with high ST6GAL1 expression, and these cells displayed greater activity of the glycolytic enzymes, hexokinase and phosphofructokinase. Metabolism maps were generated from the combined Seahorse data, which suggested that ST6GAL1 functions to enhance the overall metabolism of tumor cells. Finally, we determined that OV4 and ID8 cells with high ST6GAL1 expression were more invasive under conditions of hypoxia. Collectively, these results highlight the importance of sialylation in regulating the metabolic phenotype of ovarian cancer cells.


Assuntos
Antineoplásicos , Neoplasias Ovarianas , Humanos , Feminino , Sialiltransferases/genética , Sialiltransferases/metabolismo , Transdução de Sinais , Neoplasias Ovarianas/genética , Neoplasias Ovarianas/patologia , Hipóxia , beta-D-Galactosídeo alfa 2-6-Sialiltransferase , Antígenos CD/metabolismo
5.
J Biol Chem ; 298(4): 101726, 2022 04.
Artigo em Inglês | MEDLINE | ID: mdl-35157848

RESUMO

Heterogeneity within the glycocalyx influences cell adhesion mechanics and signaling. However, the role of specific glycosylation subtypes in influencing cell mechanics via alterations of receptor function remains unexplored. It has been shown that the addition of sialic acid to terminal glycans impacts growth, development, and cancer progression. In addition, the sialyltransferase ST6Gal-I promotes epidermal growth factor receptor (EGFR) activity, and we have shown EGFR is an 'allosteric mechano-organizer' of integrin tension. Here, we investigated the impact of ST6Gal-I on cell mechanics. Using DNA-based tension gauge tether probes of variable thresholds, we found that high ST6Gal-I activity promotes increased integrin forces and spreading in Cos-7 and OVCAR3, OVCAR5, and OV4 cancer cells. Further, employing inhibitors and function-blocking antibodies against ß1, ß3, and ß5 integrins and ST6Gal-I targets EGFR, tumor necrosis factor receptor, and Fas cell surface death receptor, we validated that the observed phenotypes are EGFR-specific. We found that while tension, contractility, and adhesion are extracellular-signal-regulated kinase pathway-dependent, spreading, proliferation, and invasion are phosphoinositide 3-kinase-Akt serine/threonine kinase dependent. Using total internal reflection fluorescence microscopy and flow cytometry, we also show that high ST6Gal-I activity leads to sustained EGFR membrane retention, making it a key regulator of cell mechanics. Our findings suggest a novel sialylation-dependent mechanism orchestrating cellular mechanics and enhancing cell motility via EGFR signaling.


Assuntos
Neoplasias Ovarianas , Sialiltransferases , Linhagem Celular Tumoral , Movimento Celular , Receptores ErbB/metabolismo , Feminino , Humanos , Integrinas/metabolismo , Neoplasias Ovarianas/enzimologia , Neoplasias Ovarianas/fisiopatologia , Fosfatidilinositol 3-Quinases/metabolismo , Sialiltransferases/metabolismo , beta-D-Galactosídeo alfa 2-6-Sialiltransferase
6.
Glycobiology ; 31(5): 530-539, 2021 06 03.
Artigo em Inglês | MEDLINE | ID: mdl-33320246

RESUMO

The ST6GAL1 sialyltransferase, which adds α2-6 linked sialic acids to N-glycosylated proteins, is overexpressed in a wide range of human malignancies. Recent studies have established the importance of ST6GAL1 in promoting tumor cell behaviors such as invasion, resistance to cell stress and chemoresistance. Furthermore, ST6GAL1 activity has been implicated in imparting cancer stem cell characteristics. However, despite the burgeoning interest in the role of ST6GAL1 in the phenotypic features of tumor cells, insufficient attention has been paid to the molecular mechanisms responsible for ST6GAL1 upregulation during neoplastic transformation. Evidence suggests that these mechanisms are multifactorial, encompassing genetic, epigenetic, transcriptional and posttranslational regulation. The purpose of this review is to summarize current knowledge regarding the molecular events that drive enriched ST6GAL1 expression in cancer cells.


Assuntos
Antígenos CD/metabolismo , Neoplasias/metabolismo , Sialiltransferases/metabolismo , Antígenos CD/genética , Humanos , Neoplasias/patologia , Sialiltransferases/genética
7.
PLoS One ; 15(11): e0241850, 2020.
Artigo em Inglês | MEDLINE | ID: mdl-33166339

RESUMO

The ST6Gal-I sialyltransferase, an enzyme that adds α2-6-linked sialic acids to N-glycosylated proteins, regulates multiple immunological processes. However, the contribution of receptor sialylation to inflammatory signaling has been under-investigated. In the current study, we uncovered a role for ST6Gal-I in promoting sustained signaling through two prominent inflammatory pathways, NFκB and JAK/STAT. Using the U937 monocytic cell model, we determined that knockdown (KD) of ST6Gal-I expression had no effect on the rapid activation of NFκB by TNF (≤ 30 min), whereas long-term TNF-induced NFκB activation (2-6 hr) was diminished in ST6Gal-I-KD cells. These data align with prior work in epithelial cells showing that α2-6 sialylation of TNFR1 prolongs TNF-dependent NFκB activation. Similar to TNF, long-term, but not short-term, LPS-induced activation of NFκB was suppressed by ST6Gal-I KD. ST6Gal-I KD cells also exhibited reduced long-term IRF3 and STAT3 activation by LPS. Given that ST6Gal-I activity modulated LPS-dependent signaling, we conducted pull-down assays using SNA (a lectin specific for α2-6 sialic acids) to show that the LPS receptor, TLR4, is a substrate for sialylation by ST6Gal-I. We next assessed signaling by IFNγ, IL-6 and GM-CSF, and found that ST6Gal-I-KD had a limited effect on STAT activation induced by these cytokines. To corroborate these findings, signaling was monitored in bone marrow derived macrophages (BMDMs) from mice with myeloid-specific deletion of ST6Gal-I (LysMCre/ST6Gal-Ifl/fl). In agreement with data from U937 cells, BMDMs with ST6Gal-I knockout displayed reduced long-term activation of NFκB by both TNF and LPS, and diminished long-term LPS-dependent STAT3 activation. However, STAT activation induced by IFNγ, IL-6 and GM-CSF was comparable in wild-type and ST6Gal-I knockout BMDMs. These results implicate ST6Gal-I-mediated receptor sialylation in prolonging the activity of select signaling cascades including TNF/NFκB, LPS/NFκB, and LPS/STAT3, providing new insights into ST6Gal-I's role in modulating the inflammatory phenotype of monocytic cells.


Assuntos
Antígenos CD/genética , Sialiltransferases/genética , Transdução de Sinais/efeitos dos fármacos , Fator de Necrose Tumoral alfa/farmacologia , Animais , Linhagem Celular , Técnicas de Silenciamento de Genes , Humanos , Macrófagos/efeitos dos fármacos , Macrófagos/metabolismo , Camundongos , Monócitos/efeitos dos fármacos , Monócitos/metabolismo , NF-kappa B/metabolismo , Fatores de Transcrição STAT/metabolismo
8.
J Ovarian Res ; 12(1): 93, 2019 Oct 14.
Artigo em Inglês | MEDLINE | ID: mdl-31610800

RESUMO

BACKGROUND: The ST6Gal-I glycosyltransferase, which adds α2-6-linked sialic acids to N-glycosylated proteins is upregulated in a wide range of malignancies including ovarian cancer. Prior studies have shown that ST6Gal-I-mediated sialylation of select surface receptors remodels intracellular signaling to impart cancer stem cell (CSC) characteristics. However, the mechanisms that contribute to ST6Gal-I expression in stem-like cancer cells are poorly understood. RESULTS: Herein, we identify the master stem cell transcription factor, Sox2, as a novel regulator of ST6Gal-I expression. Interestingly, SOX2 and ST6GAL1 are located within the same tumor-associated amplicon, 3q26, and these two genes exhibit coordinate gains in copy number across multiple cancers including ~ 25% of ovarian serious adenocarcinomas. In conjunction with genetic co-amplification, our studies suggest that Sox2 directly binds the ST6GAL1 promoter to drive transcription. ST6Gal-I expression is directed by at least four distinct promoters, and we identified the P3 promoter as the predominant promoter utilized by ovarian cancer cells. Chromatin Immunoprecipitation (ChIP) assays revealed that Sox2 binds regions proximal to the P3 promoter. To confirm that Sox2 regulates ST6Gal-I expression, Sox2 was either overexpressed or knocked-down in various ovarian cancer cell lines. Sox2 overexpression induced an increase in ST6Gal-I mRNA and protein, as well as surface α2-6 sialylation, whereas Sox2 knock-down suppressed levels of ST6Gal-I mRNA, protein and surface α2-6 sialylation. CONCLUSIONS: These data suggest a process whereby SOX2 and ST6GAL1 are coordinately amplified in cancer cells, with the Sox2 protein then binding the ST6GAL1 promoter to further augment ST6Gal-I expression. Our collective results provide new insight into mechanisms that upregulate ST6Gal-I expression in ovarian cancer cells, and also point to the possibility that some of the CSC characteristics commonly attributed to Sox2 may, in part, be mediated through the sialyltransferase activity of ST6Gal-I.


Assuntos
Antígenos CD/genética , Proliferação de Células/genética , Neoplasias Ovarianas/genética , Fatores de Transcrição SOXB1/genética , Sialiltransferases/genética , Apoptose/genética , Linhagem Celular Tumoral , Feminino , Regulação Neoplásica da Expressão Gênica , Glicosiltransferases/genética , Humanos , Células-Tronco Neoplásicas/metabolismo , Neoplasias Ovarianas/patologia , Ligação Proteica , Transdução de Sinais/genética
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...