Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 5 de 5
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Mol Oncol ; 2024 Apr 26.
Artigo em Inglês | MEDLINE | ID: mdl-38671580

RESUMO

Treatment with the anti-angiogenic drug bevacizumab in addition to chemotherapy has shown efficacy for breast cancer in some clinical trials, but better biomarkers are needed to optimally select patients for treatment. Here, we present an omics approach where DNA methylation profiles are integrated with gene expression and results from proteomic data in breast cancer patients to predict response to therapy and pinpoint response-related epigenetic events. Fresh-frozen tumor biopsies taken before, during, and after treatment from human epidermal growth factor receptor 2 negative non-metastatic patients receiving neoadjuvant chemotherapy with or without bevacizumab were subjected to molecular profiling. Here, we report that DNA methylation at enhancer CpGs related to cell cycle regulation can predict response to chemotherapy and bevacizumab for the estrogen receptor positive subset of patients (AUC = 0.874), and we validated this observation in an independent patient cohort with a similar treatment regimen (AUC = 0.762). Combining the DNA methylation scores with the scores from a previously published protein signature resulted in a slight increase in the prediction performance (AUC = 0.784). We also show that tumors receiving the combination treatment underwent more extensive epigenetic alterations. Finally, we performed an integrative expression-methylation quantitative trait loci analysis on alterations in DNA methylation and gene expression levels, showing that the epigenetic alterations that occur during treatment are different between responders and non-responders and that these differences may be explained by the proliferation-epithelial-to-mesenchymal transition axis through the activity of grainyhead like transcription factor 2. Using tumor purity computed from copy number data, we developed a method for estimating cancer cell-specific methylation to confirm that the association to response reflects DNA methylation in cancer cells. Taken together, these results support the potential for clinical benefit of the addition of bevacizumab to chemotherapy when administered to the correct patients.

2.
Int J Cancer ; 155(2): 282-297, 2024 Jul 15.
Artigo em Inglês | MEDLINE | ID: mdl-38489486

RESUMO

Aberrant DNA methylation is a hallmark of many cancer types. Despite our knowledge of epigenetic and transcriptomic alterations in lung adenocarcinoma (LUAD), we lack robust multi-modal molecular classifications for patient stratification. This is partly because the impact of epigenetic alterations on lung cancer development and progression is still not fully understood. To that end, we identified disease-associated processes under epigenetic regulation in LUAD. We performed a genome-wide expression-methylation Quantitative Trait Loci (emQTL) analysis by integrating DNA methylation and gene expression data from 453 patients in the TCGA cohort. Using a community detection algorithm, we identified distinct communities of CpG-gene associations with diverse biological processes. Interestingly, we identified a community linked to hormone response and lipid metabolism; the identified CpGs in this community were enriched in enhancer regions and binding regions of transcription factors such as FOXA1/2, GRHL2, HNF1B, AR, and ESR1. Furthermore, the CpGs were connected to their associated genes through chromatin interaction loops. These findings suggest that the expression of genes involved in hormone response and lipid metabolism in LUAD is epigenetically regulated through DNA methylation and enhancer-promoter interactions. By applying consensus clustering on the integrated expression-methylation pattern of the emQTL-genes and CpGs linked to hormone response and lipid metabolism, we further identified subclasses of patients with distinct prognoses. This novel patient stratification was validated in an independent patient cohort of 135 patients and showed increased prognostic significance compared to previously defined molecular subtypes.


Assuntos
Adenocarcinoma de Pulmão , Ilhas de CpG , Metilação de DNA , Epigênese Genética , Regulação Neoplásica da Expressão Gênica , Neoplasias Pulmonares , Locos de Características Quantitativas , Humanos , Adenocarcinoma de Pulmão/genética , Adenocarcinoma de Pulmão/patologia , Neoplasias Pulmonares/genética , Neoplasias Pulmonares/patologia , Ilhas de CpG/genética , Feminino , Masculino , Adenocarcinoma/genética , Adenocarcinoma/patologia , Perfilação da Expressão Gênica/métodos , Multiômica
3.
Mol Oncol ; 17(4): 548-563, 2023 04.
Artigo em Inglês | MEDLINE | ID: mdl-36562628

RESUMO

The analysis of whole genomes of pan-cancer data sets provides a challenge for researchers, and we contribute to the literature concerning the identification of robust subgroups with clear biological interpretation. Specifically, we tackle this unsupervised problem via a novel rank-based Bayesian clustering method. The advantages of our method are the integration and quantification of all uncertainties related to both the input data and the model, the probabilistic interpretation of final results to allow straightforward assessment of the stability of clusters leading to reliable conclusions, and the transparent biological interpretation of the identified clusters since each cluster is characterized by its top-ranked genomic features. We applied our method to RNA-seq data from cancer samples from 12 tumor types from the Cancer Genome Atlas. We identified a robust clustering that mostly reflects tissue of origin but also includes pan-cancer clusters. Importantly, we identified three pan-squamous clusters composed of a mix of lung squamous cell carcinoma, head and neck squamous carcinoma, and bladder cancer, with different biological functions over-represented in the top genes that characterize the three clusters. We also found two novel subtypes of kidney cancer that show different prognosis, and we reproduced known subtypes of breast cancer. Taken together, our method allows the identification of robust and biologically meaningful clusters of pan-cancer samples.


Assuntos
Neoplasias da Mama , Carcinoma de Células Escamosas , Neoplasias de Cabeça e Pescoço , Humanos , Feminino , Transcriptoma , Teorema de Bayes , Carcinoma de Células Escamosas/genética , Neoplasias da Mama/genética , Análise por Conglomerados
4.
NAR Cancer ; 4(1): zcac008, 2022 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-35350772

RESUMO

Aberrant DNA methylation is an early event in breast carcinogenesis and plays a critical role in regulating gene expression. Here, we perform genome-wide expression-methylation Quantitative Trait Loci (emQTL) analysis through the integration of DNA methylation and gene expression to identify disease-driving pathways under epigenetic control. By grouping the emQTLs using biclustering we identify associations representing important biological processes associated with breast cancer pathogenesis including regulation of proliferation and tumor-infiltrating fibroblasts. We report genome-wide loss of enhancer methylation at binding sites of proliferation-driving transcription factors including CEBP-ß, FOSL1, and FOSL2 with concomitant high expression of proliferation-related genes in aggressive breast tumors as we confirm with scRNA-seq. The identified emQTL-CpGs and genes were found connected through chromatin loops, indicating that proliferation in breast tumors is under epigenetic regulation by DNA methylation. Interestingly, the associations between enhancer methylation and proliferation-related gene expression were also observed within known subtypes of breast cancer, suggesting a common role of epigenetic regulation of proliferation. Taken together, we show that proliferation in breast cancer is linked to loss of methylation at specific enhancers and transcription factor binding and gene activation through chromatin looping.

5.
Genome Med ; 13(1): 72, 2021 04 29.
Artigo em Inglês | MEDLINE | ID: mdl-33926515

RESUMO

BACKGROUND: Abnormal DNA methylation is observed as an early event in breast carcinogenesis. However, how such alterations arise is still poorly understood. microRNAs (miRNAs) regulate gene expression at the post-transcriptional level and play key roles in various biological processes. Here, we integrate miRNA expression and DNA methylation at CpGs to study how miRNAs may affect the breast cancer methylome and how DNA methylation may regulate miRNA expression. METHODS: miRNA expression and DNA methylation data from two breast cancer cohorts, Oslo2 (n = 297) and The Cancer Genome Atlas (n = 439), were integrated through a correlation approach that we term miRNA-methylation Quantitative Trait Loci (mimQTL) analysis. Hierarchical clustering was used to identify clusters of miRNAs and CpGs that were further characterized through analysis of mRNA/protein expression, clinicopathological features, in silico deconvolution, chromatin state and accessibility, transcription factor binding, and long-range interaction data. RESULTS: Clustering of the significant mimQTLs identified distinct groups of miRNAs and CpGs that reflect important biological processes associated with breast cancer pathogenesis. Notably, two major miRNA clusters were related to immune or fibroblast infiltration, hence identifying miRNAs associated with cells of the tumor microenvironment, while another large cluster was related to estrogen receptor (ER) signaling. Studying the chromatin landscape surrounding CpGs associated with the estrogen signaling cluster, we found that miRNAs from this cluster are likely to be regulated through DNA methylation of enhancers bound by FOXA1, GATA2, and ER-alpha. Further, at the hub of the estrogen cluster, we identified hsa-miR-29c-5p as negatively correlated with the mRNA and protein expression of DNA methyltransferase DNMT3A, a key enzyme regulating DNA methylation. We found deregulation of hsa-miR-29c-5p already present in pre-invasive breast lesions and postulate that hsa-miR-29c-5p may trigger early event abnormal DNA methylation in ER-positive breast cancer. CONCLUSIONS: We describe how miRNA expression and DNA methylation interact and associate with distinct breast cancer phenotypes.


Assuntos
Neoplasias da Mama/genética , Neoplasias da Mama/patologia , Metilação de DNA/genética , Regulação Neoplásica da Expressão Gênica , Hormônios/farmacologia , MicroRNAs/genética , Cromatina/metabolismo , Ilhas de CpG/genética , DNA Metiltransferase 3A/metabolismo , Elementos Facilitadores Genéticos/genética , Feminino , Redes Reguladoras de Genes , Humanos , MicroRNAs/metabolismo , Anotação de Sequência Molecular , Família Multigênica , Fenótipo , Locos de Características Quantitativas/genética
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...