Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Preprint em Inglês | bioRxiv | ID: ppbiorxiv-489072

RESUMO

SARS-CoV-2 is a highly contagious respiratory virus and the causative agent for COVID-19. The severity of disease varies from mildly symptomatic to lethal and shows an extraordinary correlation with increasing age, which represents the major risk factor for severe COVID-191. However, the precise pathomechanisms leading to aggravated disease in the elderly are currently unknown. Delayed and insufficient antiviral immune responses early after infection as well as dysregulated and overshooting immunopathological processes late during disease were suggested as possible mechanisms. Here we show that the age-dependent increase of COVID-19 severity is caused by the disruption of a timely and well-coordinated innate and adaptive immune response due to impaired interferon (IFN) responses. To overcome the limitations of mechanistic studies in humans, we generated a mouse model for severe COVID-19 and compared the kinetics of the immune responses in adult and aged mice at different time points after infection. Aggravated disease in aged mice was characterized by a diminished IFN-{gamma} response and excessive virus replication. Accordingly, adult IFN-{gamma} receptor-deficient mice phenocopied the age-related disease severity and supplementation of IFN-{gamma} reversed the increased disease susceptibility of aged mice. Mimicking impaired type I IFN immunity in adult and aged mice, a second major risk factor for severe COVID-192-4, we found that therapeutic treatment with IFN-{lambda} in adult and a combinatorial treatment with IFN-{gamma} and IFN-{lambda} in aged Ifnar1-/-mice was highly efficient in protecting against severe disease. Our findings provide an explanation for the age-dependent disease severity of COVID-19 and clarify the nonredundant antiviral functions of type I, II and III IFNs during SARS-CoV-2 infection in an age-dependent manner. Based on our data, we suggest that highly vulnerable individuals combining both risk factors, advanced age and an impaired type I IFN immunity, may greatly benefit from immunotherapy combining IFN-{gamma} and IFN-{lambda}.

2.
Preprint em Inglês | bioRxiv | ID: ppbiorxiv-455562

RESUMO

The ongoing COVID-19 pandemic and the frequent emergence of new SARS-CoV-2 variants of concern (VOCs), requires continued development of fast and effective therapeutics. Recently, we identified high-affinity neutralizing nanobodies (Nb) specific for the receptor-binding domain (RBD) of SARS-CoV-2, which are now being used as biparatopic Nbs (bipNbs) to investigate their potential as future drug candidates. Following detailed in vitro characterization, we chose NM1267 as the most promising candidate showing high affinity binding to several recently described SARS-CoV-2 VOCs and strong neutralizing capacity against a patient isolate of B.1.351 (Beta). To assess if bipNb NM1267 confers protection against SARS-CoV-2 infection in vivo, human ACE2 transgenic mice were treated by intranasal route before infection with a lethal dose of SARS-CoV-2. NM1267-treated mice showed significantly reduced disease progression, increased survival rates and secreted less infectious virus via their nostrils. Histopathological analyses and in situ hybridization further revealed a drastically reduced viral load and inflammatory response in lungs of NM1267-treated mice. These data suggest, that bipNb NM1267 is a broadly active and easily applicable drug candidate against a variety of emerging SARS-CoV-2 VOCs.

3.
Preprint em Inglês | bioRxiv | ID: ppbiorxiv-433449

RESUMO

We have identified camelid single-domain antibodies (VHHs) that cross-neutralize SARS-CoV-1 and -2, such as VHH72, which binds to a unique highly conserved epitope in the viral receptor-binding domain (RBD) that is difficult to access for human antibodies. Here, we establish a protein engineering path for how a stable, long-acting drug candidate can be generated out of such a VHH building block. When fused to human IgG1-Fc, the prototype VHH72 molecule prophylactically protects hamsters from SARS-CoV-2. In addition, we demonstrate that both systemic and intranasal application protects hACE-2-transgenic mice from SARS-CoV-2 induced lethal disease progression. To boost potency of the lead, we used structure-guided molecular modeling combined with rapid yeast-based Fc-fusion prototyping, resulting in the affinity-matured VHH72_S56A-Fc, with subnanomolar SARS-CoV-1 and -2 neutralizing potency. Upon humanization, VHH72_S56A was fused to a human IgG1 Fc with optimized manufacturing homogeneity and silenced effector functions for enhanced safety, and its stability as well as lack of off-target binding was extensively characterized. Therapeutic systemic administration of a low dose of VHH72_S56A-Fc antibodies strongly restricted replication of both original and D614G mutant variants of SARS-CoV-2 virus in hamsters, and minimized the development of lung damage. This work led to the selection of XVR011 for clinical development, a highly stable anti-COVID-19 biologic with excellent manufacturability. Additionally, we show that XVR011 is unaffected in its neutralizing capacity of currently rapidly spreading SARS-CoV-2 variants, and demonstrate its unique, wide scope of binding across the Sarbecovirus clades.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA