Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 18 de 18
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Chemistry ; 29(58): e202301741, 2023 Oct 18.
Artigo em Inglês | MEDLINE | ID: mdl-37498679

RESUMO

The reaction of the Lewis base-stabilized phosphinoborane monomer tBuHPBH2 NMe3 (2 a) with catalytic amounts of bis(η5 :η1 -adamantylidenepentafulvene)titanium (1) provides a convenient new route to the polyphosphinoborane [tBuPH-BH2 ]n (3 a). This method offers access to high molar mass materials under mild conditions and with short reaction times (20 °C, 1 h in toluene). It represents an unprecedented example of a transition metal-mediated polymerization of a Lewis base-stabilized Group 13/15 compound. Preliminary studies of the substrate scope and a potential mechanism are reported.

2.
J Am Chem Soc ; 144(50): 23179-23190, 2022 12 21.
Artigo em Inglês | MEDLINE | ID: mdl-36484741

RESUMO

The reactions of the N-heterocyclic carbenes (NHCs) IDipp and ItBu and the cyclic(alkyl)amino carbene (CAAC) CAACMe with polyaminoborane [MeNH-BH2]n were investigated. Stoichiometric quantities of each carbene were found to cause rapid and complete depolymerization, with the major B-N-containing product identified as the NHC-aminoborane adduct, IDipp-BH2NMeH (1), cyclic borazane [MeNH-BH2]3, or borazine [MeNBH]3 with IDipp, ItBu, and CAACMe, respectively. With substoichiometric quantities of IDipp and ItBu (down to 10 and 2.5 mol %, respectively), complete loss of high molar mass material was also detected, indicating that the depolymerization is catalytic. The main products of the reaction with substoichiometric IDipp were IDipp-BH2NMeH (1) and [MeNH-BH2]3 and with substoichiometric ItBu, [MeNH-BH2]3, and [MeNBH]3 with product ratios dependent on the quantity of NHC used. Under analogous conditions with CAACMe, high molar mass material persisted alongside the formation of [MeNBH]3. Further reactivity studies with cyclic borazane [MeNH-BH2]3 and MeNH2·BH3 provided insights into depolymerization pathways. IDipp showed no reactivity toward [MeNH-BH2]3, whereas with 3 equiv of ItBu and CAACMe, the dehydrogenation product [MeNBH]3, was formed. With MeNH2·BH3, 2 equiv of carbene were used as the first acts to accept dihydrogen; the major products with IDipp, ItBu, and CAACMe were IDipp-BH2NMeH (1), [MeNBH]3, and (CAACMeH)HB═NMeH (2), respectively. The double E-H (E = B, N) bond activation product (CAACMeH)HB═NMe(HCAACMe) (3) was isolated from the reaction between 3 equiv of CAACMe and MeNH2·BH3. A unified mechanism for donor-mediated depolymerization of [MeHN-BH2]n is proposed.


Assuntos
Hidrogênio , Metano , Temperatura , Catálise
3.
Nat Commun ; 10(1): 2786, 2019 Jun 26.
Artigo em Inglês | MEDLINE | ID: mdl-31243267

RESUMO

Catalytic chemistry that involves the activation and transformation of main group substrates is relatively undeveloped and current examples are generally mediated by expensive transition metal species. Herein, we describe the use of inexpensive and readily available tBuOK as a catalyst for P-P and P-E (E = O, S, or N) bond formation. Catalytic quantities of tBuOK in the presence of imine, azobenzene hydrogen acceptors, or a stoichiometric amount of tBuOK with hydrazobenzene, allow efficient homodehydrocoupling of phosphines under mild conditions (e.g. 25 °C and < 5 min). Further studies demonstrate that the hydrogen acceptors play an intimate mechanistic role. We also show that our tBuOK catalysed methodology is general for the heterodehydrocoupling of phosphines with alcohols, thiols and amines to generate a range of potentially useful products containing P-O, P-S, or P-N bonds.

4.
Nat Commun ; 10(1): 1370, 2019 03 26.
Artigo em Inglês | MEDLINE | ID: mdl-30914640

RESUMO

The divalent carbene carbon centre in cyclic (alkyl)(amino)carbenes (CAACs) is known to exhibit transition-metal-like insertion into E-H σ-bonds (E = H, N, Si, B, P, C, O) with formation of new, strong C-E and C-H bonds. Although subsequent transformations of the products represent an attractive strategy for metal-free synthesis, few examples have been reported. Herein we describe the dehydrogenation of phosphine-boranes, RR'PH·BH3, using a CAAC, which behaves as a stoichiometric hydrogen acceptor to release monomeric phosphinoboranes, [RR'PBH2], under mild conditions. The latter species are transient intermediates that either polymerise to the corresponding polyphosphinoboranes, [RR'PBH2]n (R = Ph; R' = H, Ph or Et), or are trapped in the form of CAAC-phosphinoborane adducts, CAAC·H2BPRR' (R = R' = tBu; R = R' = Mes). In contrast to previously established methods such as transition metal-catalysed dehydrocoupling, which only yield P-monosubstituted polymers, [RHPBH2]n, the CAAC-mediated route also provides access to P-disubstituted polymers, [RR'PBH2]n (R = Ph; R' = Ph or Et).

5.
J Am Chem Soc ; 141(7): 2894-2899, 2019 Feb 20.
Artigo em Inglês | MEDLINE | ID: mdl-30726071

RESUMO

We describe a new class of inorganic polymeric materials featuring a main chain consisting of PV-O bonds and aryl side groups, which was obtained with >70 repeat units by ring-opening polymerization of cyclic phosphonates. This monomer-polymer system was found to be dynamic in solution enabling selective depolymerization under dilute conditions, which can be tuned by varying the substituents. The polymers show high thermal stability to weight loss and can be easily fabricated into self-standing thin films. Structural characterizations of the cyclic 6- and 12-membered ring precursors are also described.

6.
Chem Sci ; 10(42): 9841-9852, 2019 Nov 14.
Artigo em Inglês | MEDLINE | ID: mdl-32015807

RESUMO

Ring-opening polymerisation (ROP) of strained [1]- and [2]metallocenophanes and related species is well-established, and the monomer ring-strain is manifest in a substantial tilting of the cyclopentadienyl ligands, giving α angles of ∼14-32°. Surprisingly, tetracarba[4]nickelocenophane [Ni(η5-C5H4)2(CH2)4] (2) undergoes ROP (pyridine, 20 °C, 5 days) to give primarily insoluble poly(nickelocenylbutylene) [Ni(η5-C5H4)2(CH2)4] n (12), despite the lack of significant ring-tilt. The exoenthalpic nature of the ROP was confirmed by DFT calculations involving the cyclic precursor and model oligomers (ΔH0ROP = -14 ± 2 kJ mol-1), and is proposed to be a consequence of torsional strain present in the ansa bridge of 2. The similarly untilted disila-2-oxa[3]nickelocenophanes [Ni(η5-C5H4)2(SiMe2)2O] (13) and [Ni(η5-C5H4)2(SiMePh)2O] (14) were found to lack similar torsional strain and to be resistant to ROP under the same conditions. In contrast, 1-methyltricarba[3]nickelocenophane {Ni(η5-C5H4)2(CH2)2[CH(CH3)]} (15) with a significant tilt angle (α ∼ 16°) was found to undergo ROP to give soluble polymer {Ni(η5-C5H4)2(CH2)2[CH(CH3)]} n (18). The reversibility of the process in this case allowed for the effects of temperature and reaction concentration on the monomer-polymer equilibrium to be explored and thereby thermodynamic data to be elucidated (ΔH0ROP = -8.9 kJ mol-1, ΔG0ROP = -3.1 kJ mol-1). Compared to the previously described ROP of the unsubstituted analogue [Ni(η5-C5H4)2(CH2)3] (1) (ΔH0ROP = -10 kJ mol-1, ΔG0ROP = -4.0 kJ mol-1), the presence of the additional methyl substituent in the ansa bridge appears to marginally disfavour ROP and leads to a corresponding decrease in the equilibrium polymer yield.

7.
J Am Chem Soc ; 139(46): 16780-16790, 2017 11 22.
Artigo em Inglês | MEDLINE | ID: mdl-28991469

RESUMO

Non-metal-catalyzed heterodehydrocoupling of primary and secondary phosphines (R1R2PH, R2 = H or R1) with hydrosilanes (R3R4R5SiH, R4, R5 = H or R3) to produce synthetically useful silylphosphines (R1R2P-SiR3R4R5) has been achieved using B(C6F5)3 as the catalyst (10 mol %, 100 °C). Kinetic studies demonstrated that the reaction is first-order in hydrosilane and B(C6F5)3 but zero-order in phosphine. Control experiments, DFT calculations, and DOSY NMR studies suggest that a R1R2HP·B(C6F5)3 adduct is initially formed and undergoes partial dissociation to form an "encounter complex". The latter mediates frustrated Lewis pair type Si-H bond activation of the silane substrates. We also found that B(C6F5)3 catalyzes the homodehydrocoupling of primary phosphines to form cyclic phosphine rings and the first example of a non-metal-catalyzed hydrosilylation of P-P bonds to produce silylphosphines (R1R2P-SiR3R4R5). Moreover, the introduction of PhCN to the reactions involving secondary phosphines with hydrosilanes allowed the heterodehydrocoupling reaction to proceed efficiently under much milder conditions (1.0 mol % B(C6F5)3 at 25 °C). Mechanistic studies, as well as DFT calculations, revealed that PhCN plays a key mechanistic role in facilitating the dehydrocoupling reactions rather than simply functioning as H2-acceptor.

8.
Angew Chem Int Ed Engl ; 56(32): 9536-9540, 2017 08 01.
Artigo em Inglês | MEDLINE | ID: mdl-28605154

RESUMO

The addition of a cyclotriphosphine to a broad range of nitriles gives access to the first examples of free 1-aza-2,3,4-triphospholenes in a rapid, ambient temperature, one-pot, high-yield protocol. The reaction produces electron-rich heterocycles (four lone pairs) and features homoatomic σ-bond heterolysis, thereby combining the key features of the 1,3-dipolar cycloaddition chemistry of azides and cyclopropanes. Also reported is the first catalytic addition of P-P bonds to the C≡N bond. The coordination chemistry of the new heterocycles is explored.

9.
Inorg Chem ; 56(8): 4522-4538, 2017 Apr 17.
Artigo em Inglês | MEDLINE | ID: mdl-28345888

RESUMO

Heterolytic cleavage of homoatomic bonds is a challenge, as it requires separation of opposite charges. Even highly strained homoatomic rings (e.g., cyclopropane and cyclobutane) are kinetically stable and do not react with nucleophiles or electrophiles. In contrast, cycloalkanes bearing electron-donating/withdrawing substituents on adjacent carbons have polarized C-C bonds and undergo numerous heterolytic ring-opening and expansion reactions. Here we show that upon electrophile activation phosphorus homocycles exhibit analogous reactivity, which is modulated by the amount of ring strain and extent of bond polarization. Neutral rings (tBuP)3, 1, or (tBuP)4, 2, show no reactivity toward nitriles, but the cyclo-phosphinophosphonium derivative [(tBuP)3Me]+, [3Me]+, undergoes addition to nitriles giving five-membered P3CN heterocycles. Because of its lower ring strain, the analogous four-membered ring, [(tBuP)4Me]+, [4Me]+, is thermodynamically stable with respect to cycloaddition with nitriles, despite similar P-P bond polarization. We also report the first example of isonitrile insertion into cyclophosphines, which is facile for polarized derivatives [3Me]+ and [4Me]+, but does not proceed for neutral 1 or 2, despite the calculated exothermicity of the process. Finally, we assessed the reactions of [4R]+ R = H, Cl, F toward 4-dimethylaminopyridine (dmap), which suggest that the site of nucleophilic attack varies with the extent of P-P bond polarization. These results deconvolute the influence of ring strain and bond polarization on the chemistry of inorganic homocycles and unlock new synthetic possibilities.

10.
Dalton Trans ; 45(40): 16011-16025, 2016 Oct 12.
Artigo em Inglês | MEDLINE | ID: mdl-27535300

RESUMO

In order to generate tridentate enamido diphosphine ligand platforms, we developed procedures for the preparation of tBu2PCH2CH2P(tBu)I, which involve low temperatures, pentane solvent and addition of 4 equiv. of tBuLi to Cl2PCH2CH2PCl2 or 2 equiv. of tBuLi to known Cl(tBu)PCH2CH2P(tBu)Cl also at low temperatures in pentane; an alternate method involves the inverse addition of Cl(tBu)PCH2CH2P(tBu)Cl to 2 equiv. of tBuLi in pentane at 0 °C; all of these methods generate good yields of the tetraphosphine dimer (tBu2PCH2CH2P(tBu))2 contaminated by small amounts of tBu2PCH2CH2PtBu2 (dtbpe), which can be conveniently separated by sublimation. Subsequent oxidative cleavage of the P-P bond with I2 or 1,2-diiodoethane results in the formation of the desired tBu2PCH2CH2P(tBu)I, which undergoes C-P bond formation when added to 1 equiv. of the lithium N-2,6-diisopropylphenylenamide of cyclopentylidene imine to generate the HNPP ligand precursor; this species exists as a tautomeric mixture of the corresponding enamine and imine, the ratio of which depends on workup conditions used. This enamine-imine mixture can be used directly to form Ru(ii) species either directly with heating to generate the five-coordinate (NPP)RuCl(CO) via loss of H2 or by inclusion of 1 equiv. of KOtBu to generate (NPP)RuH(CO). X-ray crystallographic studies confirm that the geometry in the solid state matches the solution spectroscopic data. Subsequent studies of (NPP)RuH(CO) indicate that it reacts with benzaldehyde, benzyl alcohol, and H2 in a cooperative manner to generate a series of hydride carbonyls that have been characterized fully by NMR spectroscopy and X-ray crystallography.

11.
Dalton Trans ; 45(1): 32-49, 2016 Jan 07.
Artigo em Inglês | MEDLINE | ID: mdl-26621438

RESUMO

This perspective review will examine the coordination chemistry and applications of metal complexes of 4,5-diazafluorene derivatives. The versatile derivatives of 4,5-diazafluorene can serve multiple roles, and display a number of coordination modes. The ambidentate derivatives with multiple coordination sites can allow for the syntheses of coordination polymers, multimetallic, and macrocyclic complexes. In addition, certain 4,5-diazafluorene derivatives can serve as spectator ligands to support reactivity at the metal centre, or as reactive actor ligands engaging in atypical reactivity patterns. The applications of metal complexes of 4,5-diazafluorene derivatives in catalysis, photochemistry and photophysics, as well as in bioinorganic chemistry are also surveyed.

12.
Dalton Trans ; 43(23): 8951-8, 2014 Jun 21.
Artigo em Inglês | MEDLINE | ID: mdl-24803106

RESUMO

The syntheses and structures for a series of heterodinuclear complexes of 4,5-diazafluorenyl (L(-)) and 3,6-dimesityl-4,5-diazafluorenyl (LMes(-)) ligands are reported herein. In all these heterodinuclear complexes, the Ru(II) centre is sandwiched between a pentamethylcyclopentadienyl (Cp*) ligand and the C5 ring of L(-) or LMes(-) in a double η(5) fashion, while the other metal (Fe(II), Co(II), Pt(II), or Cu(I)) is bound to the N-donors.

13.
Dalton Trans ; 42(46): 16343-50, 2013 Dec 14.
Artigo em Inglês | MEDLINE | ID: mdl-24064554

RESUMO

We report both the stepwise and one-pot syntheses of Pt(II)-Cu(I) hetero-dinuclear complexes using 4,5-diazafluorenide (L(-)) and 9-(2-(diphenylphosphino)ethyl)-4,5-diazafluorenide (L(p)(-)) as binucleating ligands. In the case of L(p)(-), the tethered phosphine arm helps anchor the Pt(II) centre onto the carbon site of the diazafluorenide and the Cu(I) centre is bound to the N,N-chelate site. In the case of L(-), the Cu(I) centre is bound to the carbon site of diazafluorenide and the Pt(II) centre is coordinated to the N,N-chelate site.


Assuntos
Complexos de Coordenação/síntese química , Cobre/química , Platina/química , Piridinas/química , Quelantes/química , Complexos de Coordenação/química , Cristalografia por Raios X , Conformação Molecular , Fosfinas/química , Estereoisomerismo
14.
J Am Chem Soc ; 135(43): 16175-83, 2013 Oct 30.
Artigo em Inglês | MEDLINE | ID: mdl-24069952

RESUMO

The 4,5-diazafluorenide ligand (L(-)) serves as an actor ligand in the formal insertion of CO2 into a C-H bond remote from the metal center. With the Ru(II) complex of L(-) as the starting point, Rh(III), Rh(I), and Cu(I) were used as spectator metal centers to tune the reactivity of the actor ligand toward CO2. In the case of Rh(III)-diazafluorenide a room temperature reversible activation of CO2 was observed, similar to the isoelectronic Ru(II) analogue. In the case of Rh(I)- and Cu(I)-diazafluorenide CO2 is trapped by the formation of dinuclear carboxylate complexes and diazafluorene (LH). The spectator metal center could even be replaced entirely with an organic group allowing for the first metal-free reversible tandem CO2 and C-H activation.

15.
Chem Commun (Camb) ; 48(44): 5416-8, 2012 Jun 04.
Artigo em Inglês | MEDLINE | ID: mdl-22331301

RESUMO

Here we report a reversible formal insertion of CO(2) into a remote C-H bond of the diazafluorenide ligand (L(-)) in a Ru(II) complex which occurs at ambient temperature.

16.
Chem Commun (Camb) ; 47(29): 8349-51, 2011 Aug 07.
Artigo em Inglês | MEDLINE | ID: mdl-21695311

RESUMO

We report new Ru-CNN pincer catalysts for ester hydrogenation under mild conditions.


Assuntos
Complexos de Coordenação/química , Piridinas/química , Rutênio/química , Catálise , Cristalografia por Raios X , Ésteres , Hidrogenação , Conformação Molecular
17.
Chem Commun (Camb) ; 46(43): 8261-3, 2010 Nov 21.
Artigo em Inglês | MEDLINE | ID: mdl-20877836

RESUMO

We report the formation of a tetrapallada-macrocycle induced by an unusual transmetallation, in which an anionic bidentate chelate ligand is replaced by a phenyl ligand from phenylboronic acid, leaving the chloride ligands intact.

18.
Dalton Trans ; 39(11): 2888-902, 2010 Mar 21.
Artigo em Inglês | MEDLINE | ID: mdl-20200717

RESUMO

A cationic rhodium-sparteine complex, [((-)-sparteine)Rh(eta(4)-COD)](+) (1(+); COD = 1,5-cyclooctadiene) was obtained, isolated as its tetrafluoroborate salt (1BF(4)), and characterized using X-ray crystallography and multinuclear ((1)H, (13)C) NMR spectroscopy. This is the first structurally characterized sparteine complex of rhodium. The Rh-N bonds are unusually long (2.214(3) and 2.242(3) A), apparently due to steric repulsion between COD and sparteine. (1)H NMR exchange experiments (EXSY) demonstrate a dynamic process that results in an overall 180 degrees rotation of the COD methine protons in solution (CD(2)Cl(2)) with a first-order rate constant of 460 s(-1) at the coalescence temperature (314 K) and interpolated rate constant of 150 s(-1) at 298 K. Temperature-dependent NMR studies yield DeltaH(++) = 13.0 +/- 0.3 kcal mol(-1), DeltaS(++) = -5 +/- 1 cal mol(-1) K(-1), such that DeltaG(298)(++) = 14.3 +/- 0.3 kcal mol(-1). DFT studies (B3LYP) indicate that the loosely bound (-)-sparteine ligand rotates through a pseudo-tetrahedral transition state where both ligands are rotated approximately 90 degrees relative to each other. While both ligands remain bound (eta(4)-COD, kappa(2)-sparteine), bonding to sparteine is weakened much more than bonding to COD in the transition state. DFT computed DeltaG(298)(++) and DeltaS(++) values (15.55 kcal mol(-1) and -2.67 cal mol(-1) K(-1), respectively) agree very well with the experimental values. Attempts to find alternative mechanisms involving partial dechelation of COD and (-)-sparteine yielded slightly higher barriers along with positive DeltaS values for intermediate formation.


Assuntos
Complexos de Coordenação/química , Ligantes , Compostos Organometálicos/química , Ródio/química , Esparteína/química , Complexos de Coordenação/síntese química , Cristalografia por Raios X , Espectroscopia de Ressonância Magnética , Conformação Molecular , Simulação de Dinâmica Molecular , Termodinâmica
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...