Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 6 de 6
Filtrar
Mais filtros











Base de dados
Intervalo de ano de publicação
1.
Nat Microbiol ; 8(8): 1450-1467, 2023 08.
Artigo em Inglês | MEDLINE | ID: mdl-37337046

RESUMO

Akkermansia muciniphila, a mucophilic member of the gut microbiota, protects its host against metabolic disorders. Because it is genetically intractable, the mechanisms underlying mucin metabolism, gut colonization and its impact on host physiology are not well understood. Here we developed and applied transposon mutagenesis to identify genes important for intestinal colonization and for the use of mucin. An analysis of transposon mutants indicated that de novo biosynthesis of amino acids was required for A. muciniphila growth on mucin medium and that many glycoside hydrolases are redundant. We observed that mucin degradation products accumulate in internal compartments within bacteria in a process that requires genes encoding pili and a periplasmic protein complex, which we term mucin utilization locus (MUL) genes. We determined that MUL genes were required for intestinal colonization in mice but only when competing with other microbes. In germ-free mice, MUL genes were required for A. muciniphila to repress genes important for cholesterol biosynthesis in the colon. Our genetic system for A. muciniphila provides an important tool with which to uncover molecular links between the metabolism of mucins, regulation of lipid homeostasis and potential probiotic activities.


Assuntos
Intestinos , Mucinas , Verrucomicrobia , Animais , Camundongos , Mucinas/metabolismo , Esteróis/biossíntese , Verrucomicrobia/genética , Verrucomicrobia/crescimento & desenvolvimento , Verrucomicrobia/metabolismo , Intestinos/microbiologia , Organismos Livres de Patógenos Específicos , Elementos de DNA Transponíveis/genética , Mutagênese , Interações entre Hospedeiro e Microrganismos/genética , Espaço Intracelular/metabolismo , Proteínas de Bactérias/genética , Proteínas de Bactérias/metabolismo , Transcrição Gênica
2.
Science ; 373(6558): 966-967, 2021 08 27.
Artigo em Inglês | MEDLINE | ID: mdl-34446595
3.
Annu Rev Immunol ; 39: 449-479, 2021 04 26.
Artigo em Inglês | MEDLINE | ID: mdl-33902310

RESUMO

The immune system has coevolved with extensive microbial communities living on barrier sites that are collectively known as the microbiota. It is increasingly clear that microbial antigens and metabolites engage in a constant dialogue with the immune system, leading to microbiota-specific immune responses that occur in the absence of inflammation. This form of homeostatic immunity encompasses many arms of immunity, including B cell responses, innate-like T cells, and conventional T helper and T regulatory responses. In this review we summarize known examples of innate-like T cell and adaptive immunity to the microbiota, focusing on fundamental aspects of commensal immune recognition across different barrier sites. Furthermore, we explore how this cross talk is established during development, emphasizing critical temporal windows that establish long-term immune function. Finally, we highlight how dysregulation of immunity to the microbiota can lead to inflammation and disease, and we pinpoint outstanding questions and controversies regarding immune system-microbiota interactions.


Assuntos
Microbiota , Imunidade Adaptativa , Animais , Linfócitos B , Humanos , Imunidade Inata , Linfócitos T
4.
Science ; 364(6446): 1179-1184, 2019 06 21.
Artigo em Inglês | MEDLINE | ID: mdl-31221858

RESUMO

Intestinal adaptive immune responses influence host health, yet only a few intestinal bacteria species that induce cognate adaptive immune responses during homeostasis have been identified. Here, we show that Akkermansia muciniphila, an intestinal bacterium associated with systemic effects on host metabolism and PD-1 checkpoint immunotherapy, induces immunoglobulin G1 (IgG1) antibodies and antigen-specific T cell responses in mice. Unlike previously characterized mucosal responses, T cell responses to A. muciniphila are limited to T follicular helper cells in a gnotobiotic setting, without appreciable induction of other T helper fates or migration to the lamina propria. However, A. muciniphila-specific responses are context dependent and adopt other fates in conventional mice. These findings suggest that, during homeostasis, contextual signals influence T cell responses to the microbiota and modulate host immune function.


Assuntos
Imunidade Adaptativa , Microbioma Gastrointestinal/imunologia , Homeostase , Intestinos/imunologia , Verrucomicrobia/imunologia , Animais , Movimento Celular/imunologia , Feminino , Vida Livre de Germes , Imunidade nas Mucosas , Imunoglobulina G/imunologia , Mucosa Intestinal/imunologia , Masculino , Camundongos , Camundongos Endogâmicos C57BL , Linfócitos T Auxiliares-Indutores/imunologia
5.
PLoS Pathog ; 15(6): e1007886, 2019 06.
Artigo em Inglês | MEDLINE | ID: mdl-31251782

RESUMO

Inflammasomes are cytosolic multi-protein complexes that detect infection or cellular damage and activate the Caspase-1 (CASP1) protease. The NAIP5/NLRC4 inflammasome detects bacterial flagellin and is essential for resistance to the flagellated intracellular bacterium Legionella pneumophila. The effectors required downstream of NAIP5/NLRC4 to restrict bacterial replication remain unclear. Upon NAIP5/NLRC4 activation, CASP1 cleaves and activates the pore-forming protein Gasdermin-D (GSDMD) and the effector caspase-7 (CASP7). However, Casp1-/- (and Casp1/11-/-) mice are only partially susceptible to L. pneumophila and do not phenocopy Nlrc4-/-mice, because NAIP5/NLRC4 also activates CASP8 for restriction of L. pneumophila infection. Here we show that CASP8 promotes the activation of CASP7 and that Casp7/1/11-/- and Casp8/1/11-/- mice recapitulate the full susceptibility of Nlrc4-/- mice. Gsdmd-/- mice exhibit only mild susceptibility to L. pneumophila, but Gsdmd-/-Casp7-/- mice are as susceptible as the Nlrc4-/- mice. These results demonstrate that GSDMD and CASP7 are the key substrates downstream of NAIP5/NLRC4/CASP1/8 required for resistance to L. pneumophila.


Assuntos
Proteínas Reguladoras de Apoptose/imunologia , Proteínas de Ligação ao Cálcio/imunologia , Caspase 1/imunologia , Caspase 7/imunologia , Caspase 8/imunologia , Inflamassomos/imunologia , Legionella pneumophila/imunologia , Doença dos Legionários/imunologia , Proteína Inibidora de Apoptose Neuronal/imunologia , Animais , Proteínas Reguladoras de Apoptose/genética , Proteínas de Ligação ao Cálcio/genética , Caspase 1/genética , Caspase 7/genética , Caspase 8/genética , Inflamassomos/genética , Peptídeos e Proteínas de Sinalização Intracelular , Doença dos Legionários/genética , Doença dos Legionários/patologia , Camundongos , Camundongos Knockout , Proteína Inibidora de Apoptose Neuronal/genética , Proteínas de Ligação a Fosfato
6.
Cell ; 165(4): 827-41, 2016 May 05.
Artigo em Inglês | MEDLINE | ID: mdl-27153495

RESUMO

To maintain a symbiotic relationship between the host and its resident intestinal microbiota, appropriate mucosal T cell responses to commensal antigens must be established. Mice acquire both IgG and IgA maternally; the former has primarily been implicated in passive immunity to pathogens while the latter mediates host-commensal mutualism. Here, we report the surprising observation that mice generate T cell-independent and largely Toll-like receptor (TLR)-dependent IgG2b and IgG3 antibody responses against their gut microbiota. We demonstrate that maternal acquisition of these antibodies dampens mucosal T follicular helper responses and subsequent germinal center B cell responses following birth. This work reveals a feedback loop whereby T cell-independent, TLR-dependent antibodies limit mucosal adaptive immune responses to newly acquired commensal antigens and uncovers a broader function for maternal IgG.


Assuntos
Animais Recém-Nascidos/imunologia , Microbioma Gastrointestinal , Imunidade nas Mucosas , Imunoglobulina A/imunologia , Imunoglobulina G/imunologia , Leite Humano/imunologia , Linfócitos T Auxiliares-Indutores/imunologia , Animais , Animais Recém-Nascidos/microbiologia , Linfócitos B/imunologia , Ativação Linfocitária , Camundongos , Camundongos Endogâmicos C57BL , Transdução de Sinais , Organismos Livres de Patógenos Específicos , Receptores Toll-Like/imunologia
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA