Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 11 de 11
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Bioinformatics ; 40(Supplement_1): i237-i246, 2024 Jun 28.
Artigo em Inglês | MEDLINE | ID: mdl-38940169

RESUMO

MOTIVATION: Noncoding RNAs (ncRNAs) express their functions by adopting molecular structures. Specifically, RNA secondary structures serve as a relatively stable intermediate step before tertiary structures, offering a reliable signature of molecular function. Consequently, within an RNA functional family, secondary structures are generally more evolutionarily conserved than sequences. Conversely, homologous RNA families grouped within an RNA clan share ancestors but typically exhibit structural differences. Inferring the evolution of RNA structures within RNA families and clans is crucial for gaining insights into functional adaptations over time and providing clues about the Ancient RNA World Hypothesis. RESULTS: We introduce the median problem and the small parsimony problem for ncRNA families, where secondary structures are represented as leaf-labeled trees. We utilize the Robinson-Foulds (RF) tree distance, which corresponds to a specific edit distance between RNA trees, and a new metric called the Internal-Leafset (IL) distance. While the RF tree distance compares sets of leaves descending from internal nodes of two RNA trees, the IL distance compares the collection of leaf-children of internal nodes. The latter is better at capturing differences in structural elements of RNAs than the RF distance, which is more focused on base pairs. We also consider a more general tree edit distance that allows the mapping of base pairs that are not perfectly aligned. We study the theoretical complexity of the median problem and the small parsimony problem under the three distance metrics and various biologically relevant constraints, and we present polynomial-time maximum parsimony algorithms for solving some versions of the problems. Our algorithms are applied to ncRNA families from the RFAM database, illustrating their practical utility. AVAILABILITY AND IMPLEMENTATION: https://github.com/bmarchand/rna\_small\_parsimony.


Assuntos
Conformação de Ácido Nucleico , RNA não Traduzido , RNA não Traduzido/genética , RNA não Traduzido/química , Algoritmos , Evolução Molecular , Análise de Sequência de RNA/métodos , Biologia Computacional/métodos
2.
Sci Adv ; 8(8): eabg3842, 2022 02 25.
Artigo em Inglês | MEDLINE | ID: mdl-35196080

RESUMO

The shift from sexual reproduction to parthenogenesis has occurred repeatedly in animals, but how the loss of sex affects genome evolution remains poorly understood. We generated reference genomes for five independently evolved parthenogenetic species in the stick insect genus Timema and their closest sexual relatives. Using these references and population genomic data, we show that parthenogenesis results in an extreme reduction of heterozygosity and often leads to genetically uniform populations. We also find evidence for less effective positive selection in parthenogenetic species, suggesting that sex is ubiquitous in natural populations because it facilitates fast rates of adaptation. Parthenogenetic species did not show increased transposable element (TE) accumulation, likely because there is little TE activity in the genus. By using replicated sexual-parthenogenetic comparisons, our study reveals how the absence of sex affects genome evolution in natural populations, providing empirical support for the negative consequences of parthenogenesis as predicted by theory.


Assuntos
Genoma de Inseto , Partenogênese , Animais , Elementos de DNA Transponíveis/genética , Insetos/genética , Neópteros/genética , Partenogênese/genética , Reprodução/genética
3.
Proc Natl Acad Sci U S A ; 118(38)2021 09 21.
Artigo em Inglês | MEDLINE | ID: mdl-34535550

RESUMO

Sex strongly impacts genome evolution via recombination and segregation. In the absence of these processes, haplotypes within lineages of diploid organisms are predicted to accumulate mutations independently of each other and diverge over time. This so-called "Meselson effect" is regarded as a strong indicator of the long-term evolution under obligate asexuality. Here, we present genomic and transcriptomic data of three populations of the asexual oribatid mite species Oppiella nova and its sexual relative Oppiella subpectinata We document strikingly different patterns of haplotype divergence between the two species, strongly supporting Meselson effect-like evolution and long-term asexuality in O. nova: I) variation within individuals exceeds variation between populations in O. nova but vice versa in O. subpectinata; II) two O. nova sublineages feature a high proportion of lineage-specific heterozygous single-nucleotide polymorphisms (SNPs), indicating that haplotypes continued to diverge after lineage separation; III) the deepest split in gene trees generally separates the two haplotypes in O. nova, but populations in O. subpectinata; and IV) the topologies of the two haplotype trees match each other. Our findings provide positive evidence for the absence of canonical sex over evolutionary time in O. nova and suggest that asexual oribatid mites can escape the dead-end fate usually associated with asexual lineages.


Assuntos
Ácaros/genética , Reprodução Assexuada/genética , Ácaros e Carrapatos/genética , Animais , Evolução Molecular , Variação Genética/genética , Haplótipos/genética , Filogenia
4.
Bioinformatics ; 37(Suppl_1): i120-i132, 2021 07 12.
Artigo em Inglês | MEDLINE | ID: mdl-34252921

RESUMO

MOTIVATION: It is largely established that all extant mitochondria originated from a unique endosymbiotic event integrating an α-proteobacterial genome into an eukaryotic cell. Subsequently, eukaryote evolution has been marked by episodes of gene transfer, mainly from the mitochondria to the nucleus, resulting in a significant reduction of the mitochondrial genome, eventually completely disappearing in some lineages. However, in other lineages such as in land plants, a high variability in gene repertoire distribution, including genes encoded in both the nuclear and mitochondrial genome, is an indication of an ongoing process of Endosymbiotic Gene Transfer (EGT). Understanding how both nuclear and mitochondrial genomes have been shaped by gene loss, duplication and transfer is expected to shed light on a number of open questions regarding the evolution of eukaryotes, including rooting of the eukaryotic tree. RESULTS: We address the problem of inferring the evolution of a gene family through duplication, loss and EGT events, the latter considered as a special case of horizontal gene transfer occurring between the mitochondrial and nuclear genomes of the same species (in one direction or the other). We consider both EGT events resulting in maintaining (EGTcopy) or removing (EGTcut) the gene copy in the source genome. We present a linear-time algorithm for computing the DLE (Duplication, Loss and EGT) distance, as well as an optimal reconciled tree, for the unitary cost, and a dynamic programming algorithm allowing to output all optimal reconciliations for an arbitrary cost of operations. We illustrate the application of our EndoRex software and analyze different costs settings parameters on a plant dataset and discuss the resulting reconciled trees. AVAILABILITY AND IMPLEMENTATION: EndoRex implementation and supporting data are available on the GitHub repository via https://github.com/AEVO-lab/EndoRex.


Assuntos
Evolução Molecular , Transferência Genética Horizontal , Algoritmos , Duplicação Gênica , Genoma , Filogenia , Simbiose/genética
5.
G3 (Bethesda) ; 11(4)2021 04 15.
Artigo em Inglês | MEDLINE | ID: mdl-33591306

RESUMO

Ostracods are one of the oldest crustacean groups with an excellent fossil record and high importance for phylogenetic analyses but genome resources for this class are still lacking. We have successfully assembled and annotated the first reference genomes for three species of nonmarine ostracods; two with obligate sexual reproduction (Cyprideis torosa and Notodromas monacha) and the putative ancient asexual Darwinula stevensoni. This kind of genomic research has so far been impeded by the small size of most ostracods and the absence of genetic resources such as linkage maps or BAC libraries that were available for other crustaceans. For genome assembly, we used an Illumina-based sequencing technology, resulting in assemblies of similar sizes for the three species (335-382 Mb) and with scaffold numbers and their N50 (19-56 kb) in the same orders of magnitude. Gene annotations were guided by transcriptome data from each species. The three assemblies are relatively complete with BUSCO scores of 92-96. The number of predicted genes (13,771-17,776) is in the same range as Branchiopoda genomes but lower than in most malacostracan genomes. These three reference genomes from nonmarine ostracods provide the urgently needed basis to further develop ostracods as models for evolutionary and ecological research.


Assuntos
Crustáceos , Genoma , Animais , Evolução Biológica , Crustáceos/genética , Filogenia , Reprodução
6.
BMC Biol ; 18(1): 1, 2020 01 02.
Artigo em Inglês | MEDLINE | ID: mdl-31898513

RESUMO

BACKGROUND: New sequencing technologies have lowered financial barriers to whole genome sequencing, but resulting assemblies are often fragmented and far from 'finished'. Updating multi-scaffold drafts to chromosome-level status can be achieved through experimental mapping or re-sequencing efforts. Avoiding the costs associated with such approaches, comparative genomic analysis of gene order conservation (synteny) to predict scaffold neighbours (adjacencies) offers a potentially useful complementary method for improving draft assemblies. RESULTS: We evaluated and employed 3 gene synteny-based methods applied to 21 Anopheles mosquito assemblies to produce consensus sets of scaffold adjacencies. For subsets of the assemblies, we integrated these with additional supporting data to confirm and complement the synteny-based adjacencies: 6 with physical mapping data that anchor scaffolds to chromosome locations, 13 with paired-end RNA sequencing (RNAseq) data, and 3 with new assemblies based on re-scaffolding or long-read data. Our combined analyses produced 20 new superscaffolded assemblies with improved contiguities: 7 for which assignments of non-anchored scaffolds to chromosome arms span more than 75% of the assemblies, and a further 7 with chromosome anchoring including an 88% anchored Anopheles arabiensis assembly and, respectively, 73% and 84% anchored assemblies with comprehensively updated cytogenetic photomaps for Anopheles funestus and Anopheles stephensi. CONCLUSIONS: Experimental data from probe mapping, RNAseq, or long-read technologies, where available, all contribute to successful upgrading of draft assemblies. Our evaluations show that gene synteny-based computational methods represent a valuable alternative or complementary approach. Our improved Anopheles reference assemblies highlight the utility of applying comparative genomics approaches to improve community genomic resources.


Assuntos
Anopheles/genética , Evolução Biológica , Cromossomos , Técnicas Genéticas/instrumentação , Genômica/métodos , Sintenia , Animais , Mapeamento Cromossômico
7.
NAR Genom Bioinform ; 2(4): lqaa086, 2020 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-33575631

RESUMO

Predicting RNA structure is crucial for understanding RNA's mechanism of action. Comparative approaches for the prediction of RNA structures can be classified into four main strategies. The three first-align-and-fold, align-then-fold and fold-then-align-exploit multiple sequence alignments to improve the accuracy of conserved RNA-structure prediction. Align-and-fold methods perform generally better, but are also typically slower than the other alignment-based methods. The fourth strategy-alignment-free-consists in predicting the conserved RNA structure without relying on sequence alignment. This strategy has the advantage of being the faster, while predicting accurate structures through the use of latent representations of the candidate structures for each sequence. This paper presents aliFreeFoldMulti, an extension of the aliFreeFold algorithm. This algorithm predicts a representative secondary structure of multiple RNA homologs by using a vector representation of their suboptimal structures. aliFreeFoldMulti improves on aliFreeFold by additionally computing the conserved structure for each sequence. aliFreeFoldMulti is assessed by comparing its prediction performance and time efficiency with a set of leading RNA-structure prediction methods. aliFreeFoldMulti has the lowest computing times and the highest maximum accuracy scores. It achieves comparable average structure prediction accuracy as other methods, except TurboFoldII which is the best in terms of average accuracy but with the highest computing times. We present aliFreeFoldMulti as an illustration of the potential of alignment-free approaches to provide fast and accurate RNA-structure prediction methods.

8.
BMC Genomics ; 19(Suppl 2): 96, 2018 May 09.
Artigo em Inglês | MEDLINE | ID: mdl-29764366

RESUMO

BACKGROUND: Genomes rearrangements carry valuable information for phylogenetic inference or the elucidation of molecular mechanisms of adaptation. However, the detection of genome rearrangements is often hampered by current deficiencies in data and methods: Genomes obtained from short sequence reads have generally very fragmented assemblies, and comparing multiple gene orders generally leads to computationally intractable algorithmic questions. RESULTS: We present a computational method, ADSEQ, which, by combining ancestral gene order reconstruction, comparative scaffolding and de novo scaffolding methods, overcomes these two caveats. ADSEQ provides simultaneously improved assemblies and ancestral genomes, with statistical supports on all local features. Compared to previous comparative methods, it runs in polynomial time, it samples solutions in a probabilistic space, and it can handle a significantly larger gene complement from the considered extant genomes, with complex histories including gene duplications and losses. We use ADSEQ to provide improved assemblies and a genome history made of duplications, losses, gene translocations, rearrangements, of 18 complete Anopheles genomes, including several important malaria vectors. We also provide additional support for a differentiated mode of evolution of the sex chromosome and of the autosomes in these mosquito genomes. CONCLUSIONS: We demonstrate the method's ability to improve extant assemblies accurately through a procedure simulating realistic assembly fragmentation. We study a debated issue regarding the phylogeny of the Gambiae complex group of Anopheles genomes in the light of the evolution of chromosomal rearrangements, suggesting that the phylogenetic signal they carry can differ from the phylogenetic signal carried by gene sequences, more prone to introgression.


Assuntos
Anopheles/genética , Biologia Computacional/métodos , Rearranjo Gênico , Mosquitos Vetores/genética , Algoritmos , Animais , Evolução Molecular , Ordem dos Genes , Genoma de Inseto , Filogenia , Cromossomos Sexuais/genética
9.
Methods Mol Biol ; 1704: 343-362, 2018.
Artigo em Inglês | MEDLINE | ID: mdl-29277873

RESUMO

Comparative genomics considers the detection of similarities and differences between extant genomes, and, based on more or less formalized hypotheses regarding the involved evolutionary processes, inferring ancestral states explaining the similarities and an evolutionary history explaining the differences. In this chapter, we focus on the reconstruction of the organization of ancient genomes into chromosomes. We review different methodological approaches and software, applied to a wide range of datasets from different kingdoms of life and at different evolutionary depths. We discuss relations with genome assembly, and potential approaches to validate computational predictions on ancient genomes that are almost always only accessible through these predictions.


Assuntos
Evolução Biológica , Biologia Computacional/métodos , DNA Antigo/análise , Genoma , Modelos Genéticos , Cromossomos , Ordem dos Genes , Genômica/métodos , Software
11.
BMC Genomics ; 16 Suppl 10: S11, 2015.
Artigo em Inglês | MEDLINE | ID: mdl-26450761

RESUMO

We exploit the methodological similarity between ancestral genome reconstruction and extant genome scaffolding. We present a method, called ARt-DeCo that constructs neighborhood relationships between genes or contigs, in both ancestral and extant genomes, in a phylogenetic context. It is able to handle dozens of complete genomes, including genes with complex histories, by using gene phylogenies reconciled with a species tree, that is, annotated with speciation, duplication and loss events. Reconstructed ancestral or extant synteny comes with a support computed from an exhaustive exploration of the solution space. We compare our method with a previously published one that follows the same goal on a small number of genomes with universal unicopy genes. Then we test it on the whole Ensembl database, by proposing partial ancestral genome structures, as well as a more complete scaffolding for many partially assembled genomes on 69 eukaryote species. We carefully analyze a couple of extant adjacencies proposed by our method, and show that they are indeed real links in the extant genomes, that were missing in the current assembly. On a reduced data set of 39 eutherian mammals, we estimate the precision and sensitivity of ARt-DeCo by simulating a fragmentation in some well assembled genomes, and measure how many adjacencies are recovered. We find a very high precision, while the sensitivity depends on the quality of the data and on the proximity of closely related genomes.


Assuntos
Evolução Molecular , Genoma , Mamíferos/genética , Filogenia , Algoritmos , Animais , Duplicação Gênica , Sintenia/genética
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...