Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
J Am Chem Soc ; 130(1): 259-68, 2008 Jan 09.
Artigo em Inglês | MEDLINE | ID: mdl-18072771

RESUMO

We herein describe a systematic account of mononuclear ruthenium vinyl complexes L-{Ru}-CH=CH-R where the phosphine ligands at the (PR'3)2Ru(CO)Cl={Ru} moiety, the coordination number at the metal (L = 4-ethylisonicotinate or a vacant coordination site) and the substituent R (R = nbutyl, phenyl, 1-pyrenyl) have been varied. Structures of the enynyl complex Ru(CO)Cl(PPh3)2(eta1:eta2-nBuHC=CHCCnBu), which results from the coupling of the hexenyl ligand of complex 1a with another molecule of 1-hexyne, of the hexenyl complexes (nBuCH=CH)Ru(CO)Cl(PiPr3)2 (1c) and (nBuCH=CH)Ru(CO)Cl(PPh3)2(NC5H4COOEt-4) (1b), and of the pyrenyl complexes (1-Pyr-CH=CH)Ru(CO)Cl(PiPr3)2 (3c) and (1-Pyr-CH=CH)Ru(CO)Cl(PPh3)3 (3a-P) have been established by X-ray crystallography. All vinyl complexes undergo a one-electron oxidation at fairly low potentials and a second oxidation at more positive potentials. Anodic half-wave or peak potentials show a progressive shift to lower values as pi-conjugation within the vinyl ligand increases. Carbonyl band shifts of the metal-bonded CO ligand upon monooxidation are significantly smaller than is expected of a metal-centered oxidation process and are further diminished as the vinyl CH=CH entity is incorporated into a more extended pi-system. ESR spectra of the electrogenerated radical cations display negligible g-value anisotropies and small deviations of the average g-value from that of the free electron. The vinyl ligands thus strongly contribute to or even dominate the anodic oxidation processes. This renders them a class of truly "non-innocent" ligands in organometallic ruthenium chemistry. Experimental findings are fully supported by quantum chemical calculations: The contribution of the vinyl ligand to the HOMO increases from 46% (Ru-vinyl delocalized) to 84% (vinyl dominated) as R changes from nbutyl to 1-pyrenyl.

2.
Dalton Trans ; (46): 5506-14, 2006 Dec 14.
Artigo em Inglês | MEDLINE | ID: mdl-17117220

RESUMO

The results of a detailed solid state and solution structural study of the Fe(III) bis-mida complex [Fe(III)(mida)(2)]- (mida = N-methyl-iminodiacetate) are reported. The structure of the sodium salt Na[Fe(mida)2][NaClO4]2.3H2O (1) was determined by single-crystal X-ray analysis. The complex anion in 1 contains a six-coordinate Fe(III) centre bound to two tridentate mida ligands arranged in the meridional configuration, and the mer Fe(III)N2O4 chromophore shows a high degree of distortion from regular octahedral symmetry. Raman- and UV/VIS/NIR spectroscopic measurements showed that no gross changes take place in the Fe(III) coordination sphere upon redissolution in water. Quantum chemical calculations of all three possible configurations of the [Fe(mida)2]- complex ion in the gas phase support the finding that the mer isomer is more stable than the u-fac (cis) and s-fac (trans) isomers. Redox potential measurements of the Fe(III/II)(mida) couple in dependence of pH led to the following values for the equilibrium contants: log beta(III)(101) = 11.98 +/- 0.05, log beta(III)(102) = 20.49 +/- 0.01, pK(III)(a1 OH) = 7.81; log beta(II)(101) = 6.17 +/- 0.01, log beta(II)(102) = 11.39 +/- 0.01.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...