Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 70
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
ISME J ; 18(1)2024 Jan 08.
Artigo em Inglês | MEDLINE | ID: mdl-38366190

RESUMO

The increasing trend in sea surface temperature promotes the spread of Vibrio species, which are known to cause diseases in a wide range of marine organisms. Among these pathogens, Vibrio mediterranei has emerged as a significant threat, leading to bleaching in the coral species Oculina patagonica. Bacteriophages, or phages, are viruses that infect bacteria, thereby regulating microbial communities and playing a crucial role in the coral's defense against pathogens. However, our understanding of phages that infect V. mediterranei is limited. In this study, we identified two phage species capable of infecting V. mediterranei by utilizing a combination of cultivation and metagenomic approaches. These phages are low-abundance specialists within the coral mucus layer that exhibit rapid proliferation in the presence of their hosts, suggesting a potential role in coral defense. Additionally, one of these phages possesses a conserved domain of a leucine-rich repeat protein, similar to those harbored in the coral genome, that plays a key role in pathogen recognition, hinting at potential coral-phage coevolution. Furthermore, our research suggests that lytic Vibrio infections could trigger prophage induction, which may disseminate genetic elements, including virulence factors, in the coral mucus layer. Overall, our findings underscore the importance of historical coral-phage interactions as a form of coral immunity against invasive Vibrio pathogens.


Assuntos
Antozoários , Bacteriófagos , Vibrio , Animais , Antozoários/microbiologia , Bacteriófagos/genética , Vibrio/fisiologia , Temperatura , Muco
2.
mSystems ; 8(4): e0021523, 2023 08 31.
Artigo em Inglês | MEDLINE | ID: mdl-37345931

RESUMO

The phylum Gemmatimonadota comprises mainly uncultured microorganisms that inhabit different environments such as soils, freshwater lakes, marine sediments, sponges, or corals. Based on 16S rRNA gene studies, the group PAUC43f is one of the most frequently retrieved Gemmatimonadota in marine samples. However, its physiology and ecological roles are completely unknown since, to date, not a single PAUC43f isolate or metagenome-assembled genome (MAG) has been characterized. Here, we carried out a broad study of the distribution, abundance, ecotaxonomy, and metabolism of PAUC43f, for which we propose the name of Palauibacterales. This group was detected in 4,965 16S rRNA gene amplicon datasets, mainly from marine sediments, sponges, corals, soils, and lakes, reaching up to 34.3% relative abundance, which highlights its cosmopolitan character, mainly salt-related. The potential metabolic capabilities inferred from 52 Palauibacterales MAGs recovered from marine sediments, sponges, and saline soils suggested a facultative aerobic and chemoorganotrophic metabolism, although some members may also oxidize hydrogen. Some Palauibacterales species might also play an environmental role as N2O consumers as well as suppliers of serine and thiamine. When compared to the rest of the Gemmatimonadota phylum, the biosynthesis of thiamine was one of the key features of the Palauibacterales. Finally, we show that polysaccharide utilization loci (PUL) are widely distributed within the Gemmatimonadota so that they are not restricted to Bacteroidetes, as previously thought. Our results expand the knowledge about this cryptic phylum and provide new insights into the ecological roles of the Gemmatimonadota in the environment. IMPORTANCE Despite advances in molecular and sequencing techniques, there is still a plethora of unknown microorganisms with a relevant ecological role. In the last years, the mostly uncultured Gemmatimonadota phylum is attracting scientific interest because of its widespread distribution and abundance, but very little is known about its ecological role in the marine ecosystem. Here we analyze the global distribution and potential metabolism of the marine Gemmatimonadota group PAUC43f, for which we propose the name of Palauibacterales order. This group presents a saline-related character and a chemoorganoheterotrophic and facultatively aerobic metabolism, although some species might oxidize H2. Given that Palauibacterales is potentially able to synthesize thiamine, whose auxotrophy is the second most common in the marine environment, we propose Palauibacterales as a key thiamine supplier to the marine communities. This finding suggests that Gemmatimonadota could have a more relevant role in the marine environment than previously thought.


Assuntos
Bactérias , Ecossistema , RNA Ribossômico 16S/genética , Bactérias/genética , Metagenoma/genética , Lagos
3.
Front Microbiol ; 13: 937683, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-36160249

RESUMO

Coastal marine lagoons are environments highly vulnerable to anthropogenic pressures such as agriculture nutrient loading or runoff from metalliferous mining. Sediment microorganisms, which are key components in the biogeochemical cycles, can help attenuate these impacts by accumulating nutrients and pollutants. The Mar Menor, located in the southeast of Spain, is an example of a coastal lagoon strongly altered by anthropic pressures, but the microbial community inhabiting its sediments remains unknown. Here, we describe the sediment prokaryotic communities along a wide range of environmental conditions in the lagoon, revealing that microbial communities were highly heterogeneous among stations, although a core microbiome was detected. The microbiota was dominated by Delta- and Gammaproteobacteria and members of the Bacteroidia class. Additionally, several uncultured groups such as Asgardarchaeota were detected in relatively high proportions. Sediment texture, the presence of Caulerpa or Cymodocea, depth, and geographic location were among the most important factors structuring microbial assemblages. Furthermore, microbial communities in the stations with the highest concentrations of potentially toxic elements (Fe, Pb, As, Zn, and Cd) were less stable than those in the non-contaminated stations. This finding suggests that bacteria colonizing heavily contaminated stations are specialists sensitive to change.

4.
mSystems ; 6(5): e0086621, 2021 Oct 26.
Artigo em Inglês | MEDLINE | ID: mdl-34519521

RESUMO

Posidonia oceanica is a long-living and very slow-growing marine seagrass endemic to the Mediterranean Sea. It produces large amounts of leaf material and rhizomes, which can reach the shore and build important banks known as "banquettes." In recent years, interest in the potential uses of these P. oceanica banquettes has increased, and it was demonstrated that biomass extracts showed antioxidant, antifungal, and antiviral activities. The discovery of new compounds through the culture of microorganisms is limited, and to overcome this limitation, we performed a metagenomic study to investigate the microbial community associated with P. oceanica banquettes. Our results showed that the microbial community associated with P. oceanica banquettes was dominated by Alphaproteobacteria, Gammaproteobacteria, Bacteroidetes, and Cyanobacteria. Pseudoalteromonas was the dominant genus, followed by Alteromonas, Labrenzia, and Aquimarina. The metagenome reads were binned and assembled into 23 nearly complete metagenome-assembled genomes (MAGs), which belonged to new families of Cyanobacteria, Myxococcota, and Granulosicoccaceae and also to the novel genus recently described as Gammaproteobacteria family UBA10353. A comparative analysis with 60 published metagenomes from different environments, including seawater, marine biofilms, soils, corals, sponges, and hydrothermal vents, indicated that banquettes have numbers of natural products and carbohydrate active enzymes (CAZymes) similar to those found for soils and were only surpassed by marine biofilms. New proteins assigned to cellulosome modules and lignocellulose-degrading enzymes were also found. These results unveiled the diverse microbial composition of P. oceanica banquettes and determined that banquettes are a potential source of bioactive compounds and novel enzymes. IMPORTANCE Posidonia oceanica is a long-living and very slow-growing marine seagrass endemic to the Mediterranean Sea that forms large amounts of leaf material and rhizomes, which can reach the shore and build important banks known as "banquettes." These banquettes accumulate on the shore, where they can prevent erosion, although they also cause social concern due to their impact on beach use. Furthermore, Posidonia dry material has been considered a source of traditional remedies in several areas of the Mediterranean, and a few studies have been carried out to explore pharmacological activities of Posidonia extracts. The work presented here provides the first characterization of the microbiome associated with Posidonia banquettes. We carried out a metagenomic analysis together with an in-depth comparison of the banquette metagenome with 60 published metagenomes from different environments. This comparative analysis has unveiled the potential that Posidonia banquettes have for the synthesis of natural products, both in abundance (only surpassed by marine biofilms) and novelty. These products include mainly nonribosomal peptides and carbohydrate active enzymes. Thus, the interest of our work lies in the interest of Posidonia "waste" material as a source of new bioactive compounds and CAZymes.

5.
Environ Microbiol ; 23(7): 3477-3498, 2021 07.
Artigo em Inglês | MEDLINE | ID: mdl-34110059

RESUMO

Microbial communities in hypersaline underground waters derive from ancient organisms trapped within the evaporitic salt crystals and are part of the poorly known subterranean biosphere. Here, we characterized the viral and prokaryotic assemblages present in the hypersaline springs that dissolve Triassic-Keuper evaporite rocks and feed the Añana Salt Valley (Araba/Alava, Basque Country, Spain). Four underground water samples (around 23% total salinity) with different levels of exposure to the open air were analysed by means of microscopy and metagenomics. Cells and viruses in the spring water had lower concentrations than what are normally found in hypersaline environments and seemed to be mostly inactive. Upon exposure to the open air, there was an increase in activity of both cells and viruses as well as a selection of phylotypes. The underground water was inhabited by a rich community harbouring a diverse set of genes coding for retinal binding proteins. A total of 35 viral contigs from 15 to 104 kb, representing partial or total viral genomes, were assembled and their evolutionary changes through the spring system were followed by SNP analysis and metagenomic island tracking. Overall, both the viral and the prokaryotic assemblages changed quickly upon exposure to the open air conditions.


Assuntos
Metagenômica , Vírus , Metagenoma/genética , Filogenia , Salinidade , Vírus/genética
6.
Environ Microbiol ; 23(5): 2669-2682, 2021 05.
Artigo em Inglês | MEDLINE | ID: mdl-33817941

RESUMO

Extracellular DNA (eDNA) comprises all the DNA molecules outside cells. This component of microbial ecosystems may serve as a source of nutrients and genetic information. Hypersaline environments harbour one of the highest concentrations of eDNA reported for natural systems, which has been attributed to the physicochemical preservative effect of salts and to high viral abundance. Here, we compared centrifugation and filtration protocols for the extraction of dissolved DNA (dDNA, as opposed to eDNA that also includes DNA from free viral particles) from a solar saltern crystallizer pond (CR30) water sample. The crystallizer dDNA fraction has been characterized, for the first time, and compared with cellular and viral metagenomes from the same location. High-speed centrifugation affected CR30 dDNA concentration and composition due to cell lysis, highlighting that protocol optimization should be the first step in dDNA studies. Crystallizer dDNA, which accounted for lower concentrations than those previously reported for hypersaline anoxic sediments, had a mixed viral and cellular origin, was enriched in archaeal DNA and had a distinctive taxonomic composition compared to that from the cellular assemblage of the same sample. Bioinformatic analyses indicated that nanohaloarchaeal viruses could be a cause for these differences.


Assuntos
DNA Ambiental , Microbiota , Vírus , DNA , Metagenoma , Microbiota/genética , Vírus/genética
7.
ISME J ; 15(4): 1178-1191, 2021 04.
Artigo em Inglês | MEDLINE | ID: mdl-33342997

RESUMO

Microbial communities thriving in hypersaline brines of solar salterns are highly resistant and resilient to environmental changes, and salinity is a major factor that deterministically influences community structure. Here, we demonstrate that this resilience occurs even after rapid osmotic shocks caused by a threefold change in salinity (a reduction from 34 to 12% salts) leading to massive amounts of archaeal cell lysis. Specifically, our temporal metagenomic datasets identified two co-occurring ecotypes within the most dominant archaeal population of the brines Haloquadratum walsbyi that exhibited different salt concentration preferences. The dominant ecotype was generally more abundant and occurred in high-salt conditions (34%); the low abundance ecotype always co-occurred but was enriched at salinities around 20% or lower and carried unique gene content related to solute transport and gene regulation. Despite their apparent distinct ecological preferences, the ecotypes did not outcompete each other presumably due to weak functional differentiation between them. Further, the osmotic shock selected for a temporal increase in taxonomic and functional diversity at both the Hqr. walsbyi population and whole-community levels supporting the specialization-disturbance hypothesis, that is, the expectation that disturbance favors generalists. Altogether, our results provide new insights into how intraspecies diversity is maintained in light of substantial gene-content differences and major environmental perturbations.


Assuntos
Ecótipo , Microbiota , Adaptação Fisiológica , Metagenoma , Salinidade
8.
Microorganisms ; 8(11)2020 Nov 02.
Artigo em Inglês | MEDLINE | ID: mdl-33147738

RESUMO

This study analyzes the relationship between the mycobiome of the Lower Respiratory Tract (LRT) and the fungi in the domestic environment. Samples studied consisted of Broncho-Alveolar Lavage (BAL) from 45 patients who underwent bronchoscopy for different diagnostic purposes, and dust and air from the houses (ENV) of 20 of them (44.4%). Additionally, five bronchoscopes (BS) were also analyzed and negative controls were included for every procedure. All samples were processed for DNA extraction and cultures, which were performed in Sabouraud Dextrose and Potato Dextrose Agar. The fungal Internal Transcribed Spacer (ITS2) was sequenced by the Solexa/Illumina system and sequences were analyzed by QIIME 1.8.0 and compared with the UNITE Database for identification. The similarity between the two fungal communities (BAL and ENV) for a specific patient was assessed via the percentage of coincidence in the detection of specific operational taxonomic units (OTUs), and about 75% of co-occurrence was detected between the mycobiome of the LRT and the houses. Cultures confirmed the presence of the core mycobiome species. However, the low rate of isolation from BAL suggests that most of its mycobiome corresponds to non-culturable cells. This likely depends on the patient's immune system activity and inflammatory status.

9.
PLoS One ; 15(9): e0238345, 2020.
Artigo em Inglês | MEDLINE | ID: mdl-32881957

RESUMO

The theory of evolution is one of the greatest scientific achievements in the intellectual history of humankind, yet it is still contentious within certain social groups. Despite being as robust and evidence-based as any other notable scientific theory, some people show a strong reluctance to accept it. In this study, we used the Measure of Acceptance of the Theory of Evolution (MATE) and Knowledge of Evolution Exam (KEE) questionnaires with university students from four academic degree programs (Chemistry, English, History, and Biology) of ten universities from Spain to measure, respectively, acceptance and knowledge of evolutionary theory among third-year undergraduate students (nMATE = 978; nKEE = 981). Results show that acceptance of evolution is relatively high (87.2%), whereas knowledge of the theory is moderate (5.4 out of 10) although there are differences across degrees (Biology>Chemistry>History>English), and even among various universities (ranging from 4.71 to 5.81). Statistical analysis reveals that knowledge of evolutionary theory among Biology students is partially explained by the relative weight of evolutionary themes within the curriculum, suggesting that an increase in the number of hours dedicated to this topic could have a direct influence on students' knowledge of it. We also found that religion may have a significant-although relatively small-negative influence on evolutionary theory acceptance. The moderate knowledge of evolution in our undergraduate students, together with the potential problem of acceptance in certain groups, suggests the need for a revision of the evolutionary concepts in the teaching curricula of our students since primary school.


Assuntos
Evolução Biológica , Conhecimento , Estudantes/psicologia , Currículo , Humanos , Espanha , Inquéritos e Questionários , Universidades , Adulto Jovem
11.
mBio ; 11(4)2020 07 21.
Artigo em Inglês | MEDLINE | ID: mdl-32694137

RESUMO

The increase in prevalence and severity of coral disease outbreaks produced by Vibrio pathogens, and related to global warming, has seriously impacted reef-building corals throughout the oceans. The coral Oculina patagonica has been used as a model system to study coral bleaching produced by Vibrio infection. Previous data demonstrated that when two coral pathogens (Vibrio coralliilyticus and Vibrio mediterranei) simultaneously infected the coral O. patagonica, their pathogenicity was greater than when each bacterium was infected separately. Here, to understand the mechanisms underlying this synergistic effect, transcriptomic analyses of monocultures and cocultures as well as experimental infection experiments were performed. Our results revealed that the interaction between the two vibrios under culture conditions overexpressed virulence factor genes (e.g., those encoding siderophores, the type VI secretion system, and toxins, among others). Moreover, under these conditions, vibrios were also more likely to form biofilms or become motile through induction of lateral flagella. All these changes that occur as a physiological response to the presence of a competing species could favor the colonization of the host when they are present in a mixed population. Additionally, during coral experimental infections, we showed that exposure of corals to molecules released during V. coralliilyticus and V. mediterranei coculture induced changes in the coral microbiome that favored damage to coral tissue and increased the production of lyso-platelet activating factor. Therefore, we propose that competition sensing, defined as the physiological response to detection of harm or to the presence of a competing Vibrio species, enhances the ability of Vibrio coral pathogens to invade their host and cause tissue necrosis.IMPORTANCEVibrio coralliilyticus and Vibrio mediterranei are important coral pathogens capable of inducing serious coral damage, which increases severely when they infect the host simultaneously. This has consequences related to the dispersion of these pathogens among different locations that could enhance deleterious effects on coral reefs. However, the mechanisms underlying this synergistic interaction are unknown. The work described here provides a new perspective on the complex interactions among these two Vibrio coral pathogens, suggesting that coral infection could be a collateral effect of interspecific competition. Major implications of this work are that (i) Vibrio virulence mechanisms are activated in the absence of the host as a response to interspecific competition and (ii) release of molecules by Vibrio coral pathogens produces changes in the coral microbiome that favor the pathogenic potential of the entire Vibrio community. Thus, our results highlight that social cues and competition sensing are crucial determinants of development of coral diseases.


Assuntos
Antozoários/microbiologia , Interações entre Hospedeiro e Microrganismos , Interações Microbianas , Vibrio/genética , Vibrio/patogenicidade , Animais , Recifes de Corais , Perfilação da Expressão Gênica , Aquecimento Global , Água do Mar/microbiologia , Temperatura , Vibrio/classificação , Vibrioses/genética , Vibrioses/microbiologia , Virulência
12.
Environ Microbiol ; 21(11): 4300-4315, 2019 11.
Artigo em Inglês | MEDLINE | ID: mdl-31444990

RESUMO

While the dynamics of microbial community assembly driven by environmental perturbations have been extensively studied, our understanding is far from complete, particularly for light-induced perturbations. Extremely halophilic communities thriving in coastal solar salterns are mainly influenced by two environmental factors-salt concentrations and high sunlight irradiation. By experimentally manipulating light intensity through the application of shading, we showed that light acts as a deterministic factor that ultimately drives the establishment of recurrent microbial communities under near-saturation salt concentrations. In particular, the stable and highly change-resistant communities that established under high-light intensities were dominated (>90% of metagenomic reads) by Haloquadratum spp. and Salinibacter spp. On the other hand, under 37-fold lower light intensity, different, less stable and change-resistant communities were established, mainly dominated by yet unclassified haloarchaea and relatively diverse photosynthetic microorganisms. These communities harboured, in general, much lower carotenoid pigment content than their high-irradiation counterparts. Both assemblage types appeared to be highly resilient, re-establishing when favourable conditions returned after perturbation (i.e. high-irradiation for the former communities and low-irradiation for the latter ones). Overall, our results revealed that stochastic processes were of limited significance to explain these patterns.


Assuntos
Luz , Microbiota/efeitos da radiação , Bactérias/genética , Bactérias/efeitos da radiação , Metagenoma , Fotossíntese , Salinidade , Processos Estocásticos
13.
Nat Microbiol ; 4(10): 1727-1736, 2019 10.
Artigo em Inglês | MEDLINE | ID: mdl-31285584

RESUMO

Microbiomes are vast communities of microorganisms and viruses that populate all natural ecosystems. Viruses have been considered to be the most variable component of microbiomes, as supported by virome surveys and examples of high genomic mosaicism. However, recent evidence suggests that the human gut virome is remarkably stable compared with that of other environments. Here, we investigate the origin, evolution and epidemiology of crAssphage, a widespread human gut virus. Through a global collaboration, we obtained DNA sequences of crAssphage from more than one-third of the world's countries and showed that the phylogeography of crAssphage is locally clustered within countries, cities and individuals. We also found fully colinear crAssphage-like genomes in both Old-World and New-World primates, suggesting that the association of crAssphage with primates may be millions of years old. Finally, by exploiting a large cohort of more than 1,000 individuals, we tested whether crAssphage is associated with bacterial taxonomic groups of the gut microbiome, diverse human health parameters and a wide range of dietary factors. We identified strong correlations with different clades of bacteria that are related to Bacteroidetes and weak associations with several diet categories, but no significant association with health or disease. We conclude that crAssphage is a benign cosmopolitan virus that may have coevolved with the human lineage and is an integral part of the normal human gut virome.


Assuntos
Bacteriófagos/genética , Coevolução Biológica , Microbioma Gastrointestinal , Animais , Bacteriófagos/classificação , Bacteroidetes/classificação , Bacteroidetes/genética , Bacteroidetes/virologia , DNA Viral/genética , Fezes/virologia , Feminino , Variação Genética , Humanos , Masculino , Filogenia , Filogeografia , Primatas/virologia
14.
Front Microbiol ; 10: 1014, 2019.
Artigo em Inglês | MEDLINE | ID: mdl-31139164

RESUMO

In Antarctic coastal waters where nutrient limitations are low, viruses are expected to play a major role in the regulation of bloom events. Despite this, research in viral identification and dynamics is scarce, with limited information available for the Southern Ocean (SO). This study presents an integrative-omics approach, comparing variation in the viral and microbial active communities on two contrasting sample conditions from a diatom-dominated phytoplankton bloom occurring in Chile Bay in the West Antarctic Peninsula (WAP) in the summer of 2014. The known viral community, initially dominated by Myoviridae family (∼82% of the total assigned reads), changed to become dominated by Phycodnaviridae (∼90%), while viral activity was predominantly driven by dsDNA members of the Phycodnaviridae (∼50%) and diatom infecting ssRNA viruses (∼38%), becoming more significant as chlorophyll a increased. A genomic and phylogenetic characterization allowed the identification of a new viral lineage within the Myoviridae family. This new lineage of viruses infects Pseudoalteromonas and was dominant in the phage community. In addition, a new Phycodnavirus (PaV) was described, which is predicted to infect Phaeocystis antarctica, the main blooming haptophyte in the SO. This work was able to identify the changes in the main viral players during a bloom development and suggests that the changes observed in the virioplankton could be used as a model to understand the development and decay of blooms that occur throughout the WAP.

15.
Environ Microbiol ; 21(10): 3577-3600, 2019 10.
Artigo em Inglês | MEDLINE | ID: mdl-31087616

RESUMO

Peñahueca is an athalassohaline hypersaline inland ephemeral lake originated under semiarid conditions in the central Iberian Peninsula (Spain). Its chemical composition makes it extreme for microbial life as well as a terrestrial analogue of other planetary environments. To investigate the persistence of microbial life associated with sulfate-rich crusts, we applied cultivation-independent methods (optical and electron microscopy, 16S rRNA gene profiling and metagenomics) to describe the prokaryotic community and its associated viruses. The diversity for Bacteria was very low and was vastly dominated by endospore formers related to Pontibacillus marinus of the Firmicutes phylum. The archaeal assemblage was more diverse and included taxa related to those normally found in hypersaline environments. Several 'metagenome assembled genomes' were recovered, corresponding to new species of Pontibacillus, several species from the Halobacteria and one new member of the Nanohaloarchaeota. The viral assemblage, although composed of the morphotypes typical of high salt systems, showed little similarity to previously isolated/reconstructed halophages. Several putative prophages of Pontibacillus and haloarchaeal hosts were identified. Remarkably, the Peñahueca sulfate-rich metagenome contained CRISPR-associated proteins and repetitions which were over 10-fold higher than in most hypersaline systems analysed so far.


Assuntos
Archaea/genética , Bactérias/genética , Lagos/microbiologia , Vírus/genética , Archaea/classificação , Bactérias/classificação , Biodiversidade , Exobiologia , Filogenia , RNA Ribossômico 16S/genética , Cloreto de Sódio/metabolismo , Espanha , Sulfatos/metabolismo , Vírus/classificação
16.
Environ Microbiol ; 21(6): 2029-2042, 2019 06.
Artigo em Inglês | MEDLINE | ID: mdl-30724439

RESUMO

Salar de Uyuni (SdU) is the largest hypersaline salt flat and the highest lithium reservoir on Earth. In addition to extreme temperatures and high UV irradiance, SdU has high concentrations of chaotropic salts which can be important factors in controlling microbial diversity. Here, for the first time we characterize the viral diversity of this hypersaline environment during the two seasons, as well as the physicochemical characteristics and the prokaryotic communities of the analysed samples. Most of the selected samples showed a peculiar physicochemical composition and prokaryotic diversity, mostly different from each other even for samples from locations in close proximity or the same season. In contrast to most hypersaline systems Bacteria frequently outnumbered Archaea. Furthermore, an outstanding percentage of members of Salinibacter sp., likely a species different from the cosmopolitan Salinibacter ruber, was obtained in most of the samples. Viral communities displayed the morphologies normally found in hypersaline environments. Two seasonal samples were chosen for a detailed metagenomic analysis of the viral assemblage. Both viral communities shared common sequences but were dominated by sample-specific viruses, mirroring the differences also observed in physicochemical and prokaryotic community composition. These metaviromes were distinct from those detected in other hypersaline systems analysed to date.


Assuntos
Archaea/isolamento & purificação , Bactérias/isolamento & purificação , Lagos/microbiologia , Lagos/virologia , Vírus/isolamento & purificação , Archaea/classificação , Archaea/genética , Bactérias/classificação , Bactérias/genética , Biodiversidade , Lagos/análise , Metagenoma , Filogenia , Salinidade , Vírus/classificação , Vírus/genética
17.
mBio ; 10(1)2019 01 22.
Artigo em Inglês | MEDLINE | ID: mdl-30670614

RESUMO

Homologous recombination (HR) enables the exchange of genetic material between and within species. Recent studies suggest that this process plays a major role in the microevolution of microbial genomes, contributing to core genome homogenization and to the maintenance of cohesive population structures. However, we still have a very poor understanding of the possible adaptive roles of intraspecific HR and of the factors that determine its differential impact across clades and lifestyles. Here we used a unified methodological framework to assess HR in 338 complete genomes from 54 phylogenetically diverse and representative prokaryotic species, encompassing different lifestyles and a broad phylogenetic distribution. Our results indicate that lifestyle and presence of restriction-modification (RM) machineries are among the main factors shaping HR patterns, with symbionts and intracellular pathogens having the lowest HR levels. Similarly, the size of exchanged genomic fragments correlated with the presence of RM and competence machineries. Finally, genes exchanged by HR showed functional enrichments which could be related to adaptations to different environments and ecological strategies. Taken together, our results clarify the factors underlying HR impact and suggest important adaptive roles of genes exchanged through this mechanism. Our results also revealed that the extent of genetic exchange correlated with lifestyle and some genomic features. Moreover, the genes in exchanged regions were enriched for functions that reflected specific adaptations, supporting identification of HR as one of the main evolutionary mechanisms shaping prokaryotic core genomes.IMPORTANCE Microbial populations exchange genetic material through a process called homologous recombination. Although this process has been studied in particular organisms, we lack an understanding of its differential impact over the genome and across microbes with different life-styles. We used a common analytical framework to assess this process in a representative set of microorganisms. Our results uncovered important trends. First, microbes with different lifestyles are differentially impacted, with endosymbionts and obligate pathogens being those less prone to undergo this process. Second, certain genetic elements such as restriction-modification systems seem to be associated with higher rates of recombination. Most importantly, recombined genomes show the footprints of natural selection in which recombined regions preferentially contain genes that can be related to specific ecological adaptations. Taken together, our results clarify the relative contributions of factors modulating homologous recombination and show evidence for a clear a role of this process in shaping microbial genomes and driving ecological adaptations.


Assuntos
Adaptação Biológica , Archaea/genética , Bactérias/genética , Evolução Molecular , Genoma Arqueal , Genoma Bacteriano , Recombinação Homóloga , Biologia Computacional
18.
Syst Appl Microbiol ; 42(1): 30-40, 2019 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-30528276

RESUMO

Current metagenomic tools allow the recovery of microbial genomes directly from the environment. This can be accomplished by binning metagenomic contigs according to their coverage and tetranucleotide frequency, followed by an estimation of the bin quality. The public availability of bioinformatics tools, together with the decreasing cost of next generation sequencing, are democratizing this powerful approach that is spreading from specialized research groups to the general public. Using metagenomes from hypersaline environments, as well as mock metagenomes composed of Archaea and Bacteria frequently found in these systems, we have analyzed the advantages and difficulties of the binning process in these extreme environments to tackle microbial population diversity. These extreme systems harbor relatively low species diversity but high intraspecific diversity, which can compromise metagenome assembly and therefore the whole binning process. The main goal is to compare the output of the binning process with what is previously known from the analyzed samples, based on years of study using different approaches. Several scenarios have been analyzed in detail: (i) a good quality bin from a species highly abundant in the environment; (ii) an intermediate quality bin with incongruences that can be solved by further analyses and manual curation, and (iii) a low-quality bin to investigate the failure to recover a very abundant microbial genome as well as some possible solutions. The latter can be considered the "great metagenomics anomaly" and is mainly due to assembly problems derived from the microdiversity of naturally co-existing populations in nature.


Assuntos
Genoma Microbiano , Metagenômica/métodos , Salinidade , Microbiologia da Água , Archaea/genética , Archaea/isolamento & purificação , Bactérias/genética , Bactérias/isolamento & purificação , Sequenciamento de Nucleotídeos em Larga Escala , Análise de Sequência de DNA
19.
Syst Appl Microbiol ; 41(3): 198-212, 2018 May.
Artigo em Inglês | MEDLINE | ID: mdl-29429564

RESUMO

The application of tandem MALDI-TOF MS screening with 16S rRNA gene sequencing of selected isolates has been demonstrated to be an excellent approach for retrieving novelty from large-scale culturing. The application of such methodologies in different hypersaline samples allowed the isolation of the culture-recalcitrant Salinibacter ruber second phylotype (EHB-2) for the first time, as well as a new species recently isolated from the Argentinian Altiplano hypersaline lakes. In this study, the genome sequences of the different species of the phylum Rhodothermaeota were compared and the genetic repertoire along the evolutionary gradient was analyzed together with each intraspecific variability. Altogether, the results indicated an open pan-genome for the family Salinibacteraceae, as well as the codification of relevant traits such as diverse rhodopsin genes, CRISPR-Cas systems and spacers, and one T6SS secretion system that could give ecological advantages to an EHB-2 isolate. For the new Salinibacter species, we propose the name Salinibacter altiplanensis sp. nov. (the designated type strain is AN15T=CECT 9105T=IBRC-M 11031T).


Assuntos
Bacteroidetes/classificação , Genoma Bacteriano , Lagos/microbiologia , Filogenia , Salinidade , Altitude , Argentina , Técnicas de Tipagem Bacteriana , Bacteroidetes/genética , Bacteroidetes/isolamento & purificação , Sistemas CRISPR-Cas , DNA Bacteriano/genética , RNA Ribossômico 16S/genética , Rodopsina/genética , Análise de Sequência de DNA , Sistemas de Secreção Tipo VI/genética , Microbiologia da Água
20.
Front Microbiol ; 9: 22, 2018.
Artigo em Inglês | MEDLINE | ID: mdl-29410656

RESUMO

The endemic Mediterranean zooxanthellate scleractinian reef-builder Cladocora caespitosa is among the organisms most affected by warming-related mass mortality events in the Mediterranean Sea. Corals are known to contain a diverse microbiota that plays a key role in their physiology and health. Here we report the first study that examines the microbiome and pathobiome associated with C. caespitosa in three different Mediterranean locations (i.e., Genova, Columbretes Islands, and Tabarca Island). The microbial communities associated with this species showed biogeographical differences, but shared a common core microbiome that probably plays a key role in the coral holobiont. The putatively pathogenic microbial assemblage (i.e., pathobiome) of C. caespitosa also seemed to depend on geographic location and the human footprint. In locations near the coast and with higher human influence, the pathobiome was entirely constituted by Vibrio species, including the well-known coral pathogens Vibrio coralliilyticus and V. mediterranei. However, in the Columbretes Islands, located off the coast and the most pristine of the analyzed locations, no changes among microbial communities associated to healthy and necrosed samples were detected. Hence, our results provide new insights into the microbiome of the temperate corals and its role in coral health status, highlighting its dependence on the local environmental conditions and the human footprint.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...