Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 5 de 5
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Ann Bot ; 130(3): 419-430, 2022 09 19.
Artigo em Inglês | MEDLINE | ID: mdl-35405006

RESUMO

BACKGROUND AND AIMS: Plant performance is enhanced by balancing above- and below-ground resource uptake through the intraspecific adjustment of leaf and root traits. It is assumed that these organ adjustments are at least partly coordinated, so that analogous leaf and root traits broadly covary. Understanding the extent of such intraspecific leaf-root trait covariation would strongly contribute to our understanding of how plants match above- and below-ground resource use strategies as their environment changes, but comprehensive studies are lacking. METHODS: We measured analogous leaf and root traits from 11 species, as well as climate, soil and vegetation properties along a 1000-m elevation gradient in the French Alps. We determined how traits varied along the gradient, to what extent this variation was determined by the way different traits respond to environmental cues acting at different spatial scales (i.e. within and between elevations), and whether trait pairs covaried within species. KEY RESULTS: Leaf and root trait patterns strongly diverged: across the 11 species along the gradient, intraspecific leaf trait patterns were largely consistent, whereas root trait patterns were highly idiosyncratic. We also observed that, when compared with leaves, intraspecific variation was greater in root traits, due to the strong effects of the local environment (i.e. at the same elevation), while landscape-level effects (i.e. at different elevations) were minor. Overall, intraspecific trait correlations between analogous leaf and root traits were nearly absent. CONCLUSIONS: Our study suggests that environmental gradients at the landscape level, as well as local heterogeneity in soil properties, are the drivers of a strong decoupling between analogous leaf and root traits within species. This decoupling of plant resource acquisition strategies highlights how plants can exhibit diverse whole-plant acclimation strategies to modify above- and below-ground resource uptake, improving their resilience to environmental change.


Assuntos
Meio Ambiente , Folhas de Planta/fisiologia , Raízes de Plantas/fisiologia , Plantas , Clima , Fenótipo , Folhas de Planta/crescimento & desenvolvimento , Raízes de Plantas/crescimento & desenvolvimento , Plantas/anatomia & histologia , Plantas/classificação , Solo
2.
Philos Trans A Math Phys Eng Sci ; 372(2027)2014 Oct 28.
Artigo em Inglês | MEDLINE | ID: mdl-25246689

RESUMO

We propose here to interpret and model peculiar plant morphologies (cushions and tussocks) observed in the Andean Altiplano as localized structures. Such structures resulting in a patchy, aperiodic aspect of the vegetation cover are hypothesized to self-organize thanks to the interplay between facilitation and competition processes occurring at the scale of basic plant components biologically referred to as 'ramets'. (Ramets are often of clonal origin.) To verify this interpretation, we applied a simple, fairly generic model (one integro-differential equation) emphasizing via Gaussian kernels non-local facilitative and competitive feedbacks of the vegetation biomass density on its own dynamics. We show that under realistic assumptions and parameter values relating to ramet scale, the model can reproduce some macroscopic features of the observed systems of patches and predict values for the inter-patch distance that match the distances encountered in the reference area (Sajama National Park in Bolivia). Prediction of the model can be confronted in the future with data on vegetation patterns along environmental gradients so as to anticipate the possible effect of global change on those vegetation systems experiencing constraining environmental conditions.

3.
Ecol Lett ; 16(4): 478-86, 2013 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-23346919

RESUMO

Biotic interactions can shape phylogenetic community structure (PCS). However, we do not know how the asymmetric effects of foundation species on communities extend to effects on PCS. We assessed PCS of alpine plant communities around the world, both within cushion plant foundation species and adjacent open ground, and compared the effects of foundation species and climate on alpha (within-microsite), beta (between open and cushion) and gamma (open and cushion combined) PCS. In the open, alpha PCS shifted from highly related to distantly related with increasing potential productivity. However, we found no relationship between gamma PCS and climate, due to divergence in phylogenetic composition between cushion and open sub-communities in severe environments, as demonstrated by increasing phylo-beta diversity. Thus, foundation species functioned as micro-refugia by facilitating less stress-tolerant lineages in severe environments, erasing a global productivity - phylogenetic diversity relationship that would go undetected without accounting for this important biotic interaction.


Assuntos
Ecossistema , Filogenia , Fenômenos Fisiológicos Vegetais , Ásia , Europa (Continente) , Nova Zelândia , América do Norte , América do Sul
4.
J Anim Ecol ; 81(6): 1259-1267, 2012 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-22548624

RESUMO

1. The stress-gradient hypothesis (SGH) states that environmental stress modulates species interactions, causing a shift from negative interactions to net positive interactions with increasing stress. 2. Potentially, this modulation of species interactions could in turn influence biodiversity-ecosystem function (B-EF) relationships along stress gradients. Although the SGH has been extensively discussed in plant community ecology in the past two decades, it has received little attention from animal ecologists. 3. To explore whether the SGH could be applied to animal communities, we conducted a litter decomposition experiment with aquatic detritivorous invertebrates in which we manipulated litter quality and measured species interactions along this resource quality gradient. Litter quality was manipulated by presenting detritivores with leaves of plant species varying in specific leaf area and decomposition rate in streams. 4. We found a switch from negative to neutral interactions with increasing resource quality stress, in line with the SGH. However, by re-examining other published results with aquatic detritivores from the perspective of the SGH, we found that a diversity of patterns seem to characterize detritivore interactions along stress gradients. 5. Although the basic pattern proposed by the SGH may not apply to animal systems in general, we show that aquatic detritivore interactions do change along stress gradients, which underlines the importance of incorporating environmental stressors more explicitly in B-EF research.


Assuntos
Anfípodes/fisiologia , Herbivoria , Insetos/fisiologia , Magnoliopsida/metabolismo , Rios , Animais , Biota , Ecossistema , Equador , Folhas de Planta/metabolismo , Especificidade da Espécie , Estresse Fisiológico
5.
Heredity (Edinb) ; 99(6): 649-57, 2007 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-17848975

RESUMO

The Laperrine's olive (Olea europaea subsp. laperrinei) is an emblematic species of the Sahelo-Saharan Mountains. Populations of this tree are locally threatened by extinction due to climatic vicissitudes and human activities, particularly in Niger and Algeria. In order to study the spatial genetic structure and the dynamics of O. e. laperrinei populations, we sampled trees in four isolated mountain ranges (Tassili n'Ajjer and Hoggar (Algeria), Tamgak and Bagzane (Niger)). A total of 237 genets were identified using nuclear microsatellites. Phylogenetic reconstruction based on plastid DNA data supported a maternal origin of O. e. laperrinei populations in South Algeria, where a higher allelic richness was observed. Based on nuclear microsatellite data, two levels of structure were revealed: first, individuals from Niger and Algeria were separated in two distinct groups; second, four less differentiated clusters corresponded to the four studied mountain ranges. These results give support to the fact that desert barriers have greatly limited long distance gene flow. Within populations, pairwise kinship coefficients were significantly correlated to geographical distance for Niger populations but not for Algerian mountains. Historical factors and habitat heterogeneity may explain the differences observed. We conclude that the Hoggar acts as an important genetic reservoir that has to be taken into account in future conservation programmes. Moreover, very isolated endangered populations (for example, Bagzane) displaying evident genetic particularities have to be urgently considered for their endemism.


Assuntos
Olea/genética , Plastídeos/genética , Polimorfismo Genético , Argélia , Marcadores Genéticos , Níger , Olea/classificação , Filogenia , Sudão , Fatores de Tempo
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...