Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Sci Total Environ ; 544: 39-47, 2016 Feb 15.
Artigo em Inglês | MEDLINE | ID: mdl-26657248

RESUMO

The application of models to predict concentrations of faecal indicator organisms (FIOs) in environmental systems plays an important role for guiding decision-making associated with the management of microbial water quality. In recent years there has been an increasing demand by policy-makers for models to help inform FIO dynamics in order to prioritise efforts for environmental and human-health protection. However, given the limited evidence-base on which FIO models are built relative to other agricultural pollutants (e.g. nutrients) it is imperative that the end-user expectations of FIO models are appropriately managed. In response, this commentary highlights four over-arching questions associated with: (i) model purpose; (ii) modelling approach; (iii) data availability; and (iv) model application, that must be considered as part of good practice prior to the deployment of any modelling approach to predict FIO behaviour in catchment systems. A series of short and longer-term research priorities are proposed in response to these questions in order to promote better model deployment in the field of catchment microbial dynamics.


Assuntos
Modelos Estatísticos , Microbiologia da Água , Poluição da Água/estatística & dados numéricos , Qualidade da Água/normas , Agricultura/estatística & dados numéricos , Monitoramento Ambiental , Gestão de Riscos
2.
PLoS One ; 9(4): e94049, 2014.
Artigo em Inglês | MEDLINE | ID: mdl-24736409

RESUMO

The plant pathogen Sclerotinia sclerotiorum can cause serious losses on lettuce crops worldwide and as for most other susceptible crops, control relies on the application of fungicides, which target airborne ascospores. However, the efficacy of this approach depends on accurate timing of these sprays, which could be improved by an understanding of the environmental conditions that are conducive to infection. A mathematical model for S. sclerotiorum infection and disease development on lettuce is presented here for the first time, based on quantifying the effects of temperature, relative humidity (RH) and ascospore density in multiple controlled environment experiments. It was observed that disease can develop on lettuce plants inoculated with dry ascospores in the absence of apparent leaf wetness (required for spore germination). To explain this, the model conceptualises an infection court area containing microsites (in leaf axils and close to the stem base) where conditions are conducive to infection, the size of which is modified by ambient RH. The model indicated that minimum, maximum and optimum temperatures for ascospore germination were 0.0, 29.9 and 21.7°C respectively and that maximum rates of disease development occurred at spore densities >87 spores cm-2. Disease development was much more rapid at 80-100% RH at 20°C, compared to 50-70% RH and resulted in a greater proportion of lettuce plants infected. Disease development was also more rapid at 15-27°C compared to 5-10°C (85% RH). The model was validated by a further series of independent controlled environment experiments where both RH and temperature were varied and generally simulated the pattern of disease development well. The implications of the results in terms of Sclerotinia disease forecasting are discussed.


Assuntos
Ascomicetos , Umidade , Lactuca/microbiologia , Modelos Teóricos , Doenças das Plantas/microbiologia , Esporos Fúngicos , Temperatura , Algoritmos , Ascomicetos/crescimento & desenvolvimento , Reprodutibilidade dos Testes
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...