Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Preprint em Inglês | medRxiv | ID: ppmedrxiv-22272747

RESUMO

IntroductionMicrovascular abnormalities and impaired gas transfer have been observed in patients with COVID-19. The progression of pathophysiological pulmonary changes during the post-acute period in these patients remains unclear. MethodsPatients who were hospitalised due to COVID-19 pneumonia underwent a pulmonary 1H and 129Xe MRI protocol at 6, 12, 25 and 51 weeks after hospital admission. The imaging protocol included: ultra-short echo time, dynamic contrast enhanced lung perfusion, 129Xe lung ventilation, 129Xe diffusion weighted and 129Xe 3D spectroscopic imaging of gas exchange. Results9 patients were recruited and underwent MRI at 6 (n=9), 12 (n=9), 25 (n=6) and 51 (n=8) weeks after hospital admission. Patients with signs of interstitial lung damage at 3 months were excluded from this study. At 6 weeks after hospital admission, patients demonstrated impaired 129Xe gas transfer (RBC:M) but normal lung microstructure (ADC, LmD). Minor ventilation abnormalities present in four patients were largely resolved in the 6-25 week period. At 12 week follow up, all patients with lung perfusion data available (n=6) showed an increase in both pulmonary blood volume and flow when compared to 6 weeks, though this was not statistically significant. At 12 week follow up, significant improvements in 129Xe gas transfer were observed compared to 6-week examinations, however 129Xe gas transfer remained abnormally low at weeks 12, 25 and 51. Changes in 129Xe gas transfer correlated significantly with changes in pulmonary blood volume and TLCO Z-score. ConclusionsThis study demonstrates that multinuclear MRI is sensitive to functional pulmonary changes in the follow up of patients who were hospitalised with COVID-19. Impairment of xenon transfer may indicate damage to the pulmonary microcirculation.

2.
Preprint em Inglês | medRxiv | ID: ppmedrxiv-21255475

RESUMO

BACKGROUNDIncreasing age is a risk factor for COVID-19 severity and mortality; emerging science implicates GM-CSF and dysregulated myeloid cell responses in the pathophysiology of severe COVID-19. METHODSWe conducted a large, global, double-blind, randomized, placebo-controlled study evaluating a single 90 mg infusion of otilimab (human anti-GM-CSF monoclonal) plus standard of care in adults hospitalized with severe COVID-19 respiratory failure and systemic inflammation, stratified by age and clinical status. Primary outcome was the proportion of patients alive and free of respiratory failure at Day 28; secondary endpoints included all-cause mortality at Day 60. RESULTSOverall, 806 patients were randomized (1:1); 71% of patients receiving otilimab were alive and free of respiratory failure at Day 28 versus 67% receiving placebo, although this did not reach statistical significance (model-adjusted difference 5.3% [95% CI -0.8, 11.4]; p=0.09). However, there was a benefit in the pre-defined [≥]70-year age group (model-adjusted difference 19.1% [95% CI 5.2, 33.1]; nominal p=0.009); these patients also had a reduction of 14.4% (95% CI 0.9, 27.9%; nominal p=0.04) in model-adjusted all-cause mortality at Day 60. Safety findings were comparable between otilimab and placebo, and consistent with severe COVID-19. CONCLUSIONSAlthough not statistically significant in the overall population, otilimab demonstrated a substantial benefit in patients aged [≥]70, possibly reflecting a population that could benefit from therapeutic blocking of GM-CSF in severe COVID-19 where myeloid cell dysregulation is predominant. These findings are being confirmed in a further cohort of patients aged [≥]70 in Part 2 of this study. (ClinicalTrials.gov number: NCT04376684).

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...