Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 14 de 14
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Viruses ; 16(4)2024 04 19.
Artigo em Inglês | MEDLINE | ID: mdl-38675974

RESUMO

The Omicron variant of SARS-CoV-2, characterized by multiple subvariants including BA.1, XBB.1.5, EG.5, and JN.1, became the predominant strain in early 2022. Studies indicate that Omicron replicates less efficiently in lung tissue compared to the ancestral strain. However, the infectivity of Omicron in the gastrointestinal tract is not fully defined, despite the fact that 70% of COVID-19 patients experience digestive disease symptoms. Here, using primary human colonoids, we found that, regardless of individual variability, Omicron infects colon cells similarly or less effectively than the ancestral strain or the Delta variant. The variant induced limited type III interferon expression and showed no significant impact on epithelial integrity. Further experiments revealed inefficient cell-to-cell spread and spike protein cleavage in the Omicron spike protein, possibly contributing to its lower infectious particle levels. The findings highlight the variant-specific replication differences in human colonoids, providing insights into the enteric tropism of Omicron and its relevance to long COVID symptoms.


Assuntos
COVID-19 , Colo , Células Epiteliais , SARS-CoV-2 , Glicoproteína da Espícula de Coronavírus , Humanos , SARS-CoV-2/genética , SARS-CoV-2/fisiologia , SARS-CoV-2/patogenicidade , Colo/virologia , COVID-19/virologia , Células Epiteliais/virologia , Glicoproteína da Espícula de Coronavírus/metabolismo , Glicoproteína da Espícula de Coronavírus/genética , Replicação Viral , Interferon lambda
2.
mBio ; 15(3): e0228723, 2024 Mar 13.
Artigo em Inglês | MEDLINE | ID: mdl-38349185

RESUMO

Since the beginning of the coronavirus disease 2019 (COVID-19) pandemic, much effort has been dedicated to identifying effective antivirals against severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2). A number of calpain inhibitors show excellent antiviral activities against SARS-CoV-2 by targeting the viral main protease (Mpro), which plays an essential role in processing viral polyproteins. In this study, we found that calpain inhibitors potently inhibited the infection of a chimeric vesicular stomatitis virus (VSV) encoding the SARS-CoV-2 spike protein but not Mpro. In contrast, calpain inhibitors did not exhibit antiviral activities toward the wild-type VSV with its native glycoprotein. Genetic knockout of calpain-2 by CRISPR/Cas9 conferred resistance of the host cells to the chimeric VSV-SARS-CoV-2 virus and a clinical isolate of wild-type SARS-CoV-2. Mechanistically, calpain-2 facilitates SARS-CoV-2 spike protein-mediated cell attachment by positively regulating the cell surface levels of ACE2. These results highlight an Mpro-independent pathway targeted by calpain inhibitors for efficient viral inhibition. We also identify calpain-2 as a novel host factor and a potential therapeutic target responsible for SARS-CoV-2 infection at the entry step. IMPORTANCE: Many efforts in small-molecule screens have been made to counter SARS-CoV-2 infection by targeting the viral main protease, the major element that processes viral proteins after translation. Here, we discovered that calpain inhibitors further block SARS-CoV-2 infection in a main protease-independent manner. We identified the host cysteine protease calpain-2 as an important positive regulator of the cell surface levels of SARS-CoV-2 cellular receptor ACE2 and, thus, a facilitator of viral infection. By either pharmacological inhibition or genetic knockout of calpain-2, the SARS-CoV-2 binding to host cells is blocked and viral infection is decreased. Our findings highlight a novel mechanism of ACE2 regulation, which presents a potential new therapeutic target. Since calpain inhibitors also potently interfere with the viral main protease, our data also provide a mechanistic understanding of the potential use of calpain inhibitors as dual inhibitors (entry and replication) in the clinical setting of COVID-19 diseases. Our findings bring mechanistic insights into the cellular process of SARS-CoV-2 entry and offer a novel explanation to the mechanism of activities of calpain inhibitors.


Assuntos
COVID-19 , SARS-CoV-2 , Humanos , Calpaína/metabolismo , Calpaína/farmacologia , Enzima de Conversão de Angiotensina 2/metabolismo , Glicoproteína da Espícula de Coronavírus/metabolismo , Antivirais/farmacologia , Internalização do Vírus
3.
Gut Microbes ; 16(1): 2297897, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-38189373

RESUMO

Cryptosporidiosis is a major cause of severe diarrheal disease in infants from resource poor settings. The majority of infections are caused by the human-specific pathogen C. hominis and absence of in vitro growth platforms has limited our understanding of host-pathogen interactions and development of effective treatments. To address this problem, we developed a stem cell-derived culture system for C. hominis using human enterocytes differentiated under air-liquid interface (ALI) conditions. Human ALI cultures supported robust growth and complete development of C. hominis in vitro including all life cycle stages. Cryptosporidium infection induced a strong interferon response from enterocytes, possibly driven, in part, by an endogenous dsRNA virus in the parasite. Prior infection with Cryptosporidium induced type III IFN secretion and consequently blunted infection with Rotavirus, including live attenuated vaccine strains. The development of hALI provides a platform for further studies on human-specific pathogens, including clinically important coinfections that may alter vaccine efficacy.


Assuntos
Criptosporidiose , Cryptosporidium , Microbioma Gastrointestinal , Rotavirus , Lactente , Humanos , Interferon lambda , Células Epiteliais , Zea mays
4.
bioRxiv ; 2023 Sep 06.
Artigo em Inglês | MEDLINE | ID: mdl-37693422

RESUMO

Cryptosporidiosis is a major cause of severe diarrheal disease in infants from resource poor settings. The majority of infections are caused by the human-specific pathogen C. hominis and absence of in vitro growth platforms has limited our understanding of host-pathogen interactions and development of effective treatments. To address this problem, we developed a stem cell-derived culture system for C. hominis using human enterocytes differentiated under air-liquid interface (ALI) conditions. Human ALI cultures supported robust growth and complete development of C. hominis in vitro including all life cycle stages. C. hominis infection induced a strong interferon response from enterocytes, likely driven by an endogenous dsRNA virus in the parasite. Prior infection with Cryptosporidium induced type III IFN secretion and consequently blunted infection with Rotavirus, including live attenuated vaccine strains. The development of hALI provides a platform for further studies on human-specific pathogens, including clinically important coinfections that may alter vaccine efficacy.

5.
PLoS Biol ; 21(3): e3002039, 2023 03.
Artigo em Inglês | MEDLINE | ID: mdl-36930652

RESUMO

Coronaviruses (CoVs) comprise a group of important human and animal pathogens. Despite extensive research in the past 3 years, the host innate immune defense mechanisms against CoVs remain incompletely understood, limiting the development of effective antivirals and non-antibody-based therapeutics. Here, we performed an integrated transcriptomic analysis of porcine jejunal epithelial cells infected with porcine epidemic diarrhea virus (PEDV) and identified cytidine/uridine monophosphate kinase 2 (CMPK2) as a potential host restriction factor. CMPK2 exhibited modest antiviral activity against PEDV infection in multiple cell types. CMPK2 transcription was regulated by interferon-dependent and interferon regulatory factor 1 (IRF1)-dependent pathways post-PEDV infection. We demonstrated that 3'-deoxy-3',4'-didehydro-cytidine triphosphate (ddhCTP) catalysis by Viperin, another interferon-stimulated protein, was essential for CMPK2's antiviral activity. Both the classical catalytic domain and the newly identified antiviral key domain of CMPK2 played crucial roles in this process. Together, CMPK2, viperin, and ddhCTP suppressed the replication of several other CoVs of different genera through inhibition of the RNA-dependent RNA polymerase activities. Our results revealed a previously unknown function of CMPK2 as a restriction factor for CoVs, implying that CMPK2 might be an alternative target of interfering with the viral polymerase activity.


Assuntos
Infecções por Coronavirus , Coronavirus , Vírus da Diarreia Epidêmica Suína , Humanos , Animais , Suínos , Interferons , Antivirais/farmacologia , Proteínas/genética , Vírus da Diarreia Epidêmica Suína/genética
6.
Ticks Tick Borne Dis ; 14(1): 102080, 2023 01.
Artigo em Inglês | MEDLINE | ID: mdl-36375268

RESUMO

Heartland and Bourbon viruses are pathogenic tick-borne viruses putatively transmitted by Amblyomma americanum, an abundant tick species in Missouri. To assess the prevalence of these viruses in ticks, we collected 2778 ticks from eight sampling sites at Tyson Research Center, an environmental field station within St. Louis County and close to the City of St. Louis, from May - July in 2019 and 2021. Ticks were pooled according to life stage and sex, grouped by year and sampling site to create 355 pools and screened by RT-qPCR for Bourbon and Heartland viruses. Overall, 14 (3.9%) and 27 (7.6%) of the pools were positive for Bourbon virus and Heartland virus respectively. In 2019, 11 and 23 pools were positive for Bourbon and Heartland viruses respectively. These positives pools were of males, females and nymphs. In 2021, there were 4 virus positive pools out of which 3 were positive for both viruses and were comprised of females and nymphs. Five out of the 8 sampling sites were positive for at least one virus. This included a site that was positive for both viruses in both years. Detection of these viruses in an area close to a relatively large metropolis presents a greater public health threat than previously thought.


Assuntos
Carrapatos , Vírus , Animais , Missouri/epidemiologia
7.
bioRxiv ; 2022 Nov 29.
Artigo em Inglês | MEDLINE | ID: mdl-36482976

RESUMO

Since the beginning of the coronavirus disease 2019 (COVID-19) pandemic, much effort has been dedicated to identifying effective antivirals against severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2). A number of calpain inhibitors show excellent antiviral activities against SARS-CoV-2 by targeting the viral main protease (M pro ), which plays an essential role in processing viral polyproteins. In this study, we found that calpain inhibitors potently inhibited the infection of a chimeric vesicular stomatitis virus (VSV) encoding the SARS-CoV-2 spike protein, but not M pro . In contrast, calpain inhibitors did not exhibit antiviral activities towards the wild-type VSV with its native glycoprotein. Genetic knockout of calpain-2 by CRISPR/Cas9 conferred resistance of the host cells to the chimeric VSV-SARS-CoV-2 virus and a clinical isolate of wild-type SARS-CoV-2. Mechanistically, calpain-2 facilitates SARS-CoV-2 spike protein-mediated cell attachment by positively regulating the cell surface levels of ACE2. These results highlight an M pro -independent pathway targeted by calpain inhibitors for efficient viral inhibition. We also identify calpain-2 as a novel host factor and a potential therapeutic target responsible for SARS-CoV-2 infection at the entry step.

8.
mBio ; 13(4): e0130822, 2022 08 30.
Artigo em Inglês | MEDLINE | ID: mdl-35699371

RESUMO

Rotaviruses represent one of the most successful pathogens in the world, with high infectivity and efficient transmission between the young of many animal species, including humans. To overcome host defenses, rotaviruses have evolved a plethora of strategies to effectively evade the innate immune response, establish initial infection in the small intestine, produce progeny, and shed into the environment. Previously, studying the roles and relative contributions of specific rotaviral factors in innate immune evasion had been challenging without a plasmid-only reverse genetics system. Although still in its infancy, current reverse genetics technology will help address important research questions regarding rotavirus innate immune evasion, host range restriction, and viral pathogenesis. In this review, we summarize the current knowledge about the antiviral host innate immune defense mechanisms, countermeasures of rotavirus-encoded factors, and strategies to better understand these interactions using the rotavirus reverse genetics system.


Assuntos
Infecções por Rotavirus , Rotavirus , Animais , Humanos , Evasão da Resposta Imune , Imunidade Inata , Genética Reversa
11.
Science ; 373(6556)2021 Aug 13.
Artigo em Inglês | MEDLINE | ID: mdl-34210892

RESUMO

The emergence of highly transmissible SARS-CoV-2 variants of concern (VOCs) that are resistant to therapeutic antibodies highlights the need for continuing discovery of broadly reactive antibodies. We identified four receptor binding domain-targeting antibodies from three early-outbreak convalescent donors with potent neutralizing activity against 23 variants, including the B.1.1.7, B.1.351, P.1, B.1.429, B.1.526, and B.1.617 VOCs. Two antibodies are ultrapotent, with subnanomolar neutralization titers [half-maximal inhibitory concentration (IC50) 0.3 to 11.1 nanograms per milliliter; IC80 1.5 to 34.5 nanograms per milliliter). We define the structural and functional determinants of binding for all four VOC-targeting antibodies and show that combinations of two antibodies decrease the in vitro generation of escape mutants, suggesting their potential in mitigating resistance development.


Assuntos
Anticorpos Neutralizantes/imunologia , Anticorpos Antivirais/imunologia , COVID-19/imunologia , SARS-CoV-2/imunologia , SARS-CoV-2/patogenicidade , Glicoproteína da Espícula de Coronavírus/imunologia , Enzima de Conversão de Angiotensina 2/antagonistas & inibidores , Enzima de Conversão de Angiotensina 2/metabolismo , Anticorpos Neutralizantes/química , Anticorpos Neutralizantes/metabolismo , Anticorpos Antivirais/química , Anticorpos Antivirais/metabolismo , Afinidade de Anticorpos , Reações Antígeno-Anticorpo , COVID-19/virologia , Humanos , Evasão da Resposta Imune , Fragmentos Fab das Imunoglobulinas/imunologia , Fragmentos Fab das Imunoglobulinas/metabolismo , Mutação , Testes de Neutralização , Domínios Proteicos , Receptores de Coronavírus/antagonistas & inibidores , Receptores de Coronavírus/metabolismo , SARS-CoV-2/genética , Glicoproteína da Espícula de Coronavírus/química , Glicoproteína da Espícula de Coronavírus/genética , Glicoproteína da Espícula de Coronavírus/metabolismo
12.
mBio ; 7(4)2016 08 02.
Artigo em Inglês | MEDLINE | ID: mdl-27486194

RESUMO

UNLABELLED: Cryptococcus neoformans is a pathogenic fungus that is responsible for up to half a million cases of meningitis globally, especially in immunocompromised individuals. Common fungistatic drugs, such as fluconazole, are less toxic for patients but have low efficacy for initial therapy of the disease. Effective therapy against the disease is provided by the fungicidal drug amphotericin B; however, due to its high toxicity and the difficulty in administering its intravenous formulation, it is imperative to find new therapies targeting the fungus. The antiparasitic drug bithionol has been recently identified as having potent fungicidal activity. In this study, we used a combined gene dosing and drug affinity responsive target stability (GD-DARTS) screen as well as protein modeling to identify a common drug binding site of bithionol within multiple NAD-dependent dehydrogenase drug targets. This combination genetic and proteomic method thus provides a powerful method for identifying novel fungicidal drug targets for further development. IMPORTANCE: Cryptococcosis is a neglected fungal meningitis that causes approximately half a million deaths annually. The most effective antifungal agent, amphotericin B, was developed in the 1950s, and no effective medicine has been developed for this disease since that time. A key aspect of amphotericin B's effectiveness is thought to be because of its ability to kill the fungus (fungicidal activity), rather than just stop or slow its growth. The present study utilized a recently identified fungicidal agent, bithionol, to identify potential fungicidal drug targets that can be used in developing modern fungicidal agents. A combined protein and genetic analysis approach was used to identify a class of enzymes, dehydrogenases, that the fungus uses to maintain homeostasis with regard to sugar nutrients. Similarities in the drug target site were found that resulted in simultaneous inhibition and killing of the fungus by bithionol. These studies thus identify a common, multitarget site for antifungal development.


Assuntos
Antifúngicos/farmacologia , Bitionol/farmacologia , Cryptococcus neoformans/efeitos dos fármacos , Cryptococcus neoformans/enzimologia , Oxirredutases/antagonistas & inibidores , Citosol/química , Mecanismo Genético de Compensação de Dose , Simulação de Acoplamento Molecular
13.
Sci Eng Ethics ; 19(4): 1491-504, 2013 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-24272332

RESUMO

The need to make young scientists aware of their social responsibilities is widely acknowledged, although the question of how to actually do it has so far gained limited attention. A 2-day workshop entitled "Prepared for social responsibility?" attended by doctoral students from multiple disciplines in climate science, was targeted at the perceived needs of the participants and employed a format that took them through three stages of ethics education: sensitization, information and empowerment. The workshop aimed at preparing doctoral students to manage ethical dilemmas that emerge when climate science meets the public sphere (e.g., to identify and balance legitimate perspectives on particular types of geo-engineering), and is an example of how to include social responsibility in doctoral education. The paper describes the workshop from the three different perspectives of the authors: the course teacher, the head of the graduate school, and a graduate student. The elements that contributed to the success of the workshop, and thus make it an example to follow, are (1) the involvement of participating students, (2) the introduction of external expertise and role models in climate science, and (3) a workshop design that focused on ethical analyses of examples from the climate sciences.


Assuntos
Currículo , Ecologia/ética , Ética Profissional/educação , Responsabilidade Social , Estudantes , Ensino , Clima , Ecologia/educação , Humanos , Aprendizagem
14.
Adv Mar Biol ; 56: 1-150, 2009.
Artigo em Inglês | MEDLINE | ID: mdl-19895974

RESUMO

The oceans play a key role in climate regulation especially in part buffering (neutralising) the effects of increasing levels of greenhouse gases in the atmosphere and rising global temperatures. This chapter examines how the regulatory processes performed by the oceans alter as a response to climate change and assesses the extent to which positive feedbacks from the ocean may exacerbate climate change. There is clear evidence for rapid change in the oceans. As the main heat store for the world there has been an accelerating change in sea temperatures over the last few decades, which has contributed to rising sea-level. The oceans are also the main store of carbon dioxide (CO2), and are estimated to have taken up approximately 40% of anthropogenic-sourced CO2 from the atmosphere since the beginning of the industrial revolution. A proportion of the carbon uptake is exported via the four ocean 'carbon pumps' (Solubility, Biological, Continental Shelf and Carbonate Counter) to the deep ocean reservoir. Increases in sea temperature and changing planktonic systems and ocean currents may lead to a reduction in the uptake of CO2 by the ocean; some evidence suggests a suppression of parts of the marine carbon sink is already underway. While the oceans have buffered climate change through the uptake of CO2 produced by fossil fuel burning this has already had an impact on ocean chemistry through ocean acidification and will continue to do so. Feedbacks to climate change from acidification may result from expected impacts on marine organisms (especially corals and calcareous plankton), ecosystems and biogeochemical cycles. The polar regions of the world are showing the most rapid responses to climate change. As a result of a strong ice-ocean influence, small changes in temperature, salinity and ice cover may trigger large and sudden changes in regional climate with potential downstream feedbacks to the climate of the rest of the world. A warming Arctic Ocean may lead to further releases of the potent greenhouse gas methane from hydrates and permafrost. The Southern Ocean plays a critical role in driving, modifying and regulating global climate change via the carbon cycle and through its impact on adjacent Antarctica. The Antarctic Peninsula has shown some of the most rapid rises in atmospheric and oceanic temperature in the world, with an associated retreat of the majority of glaciers. Parts of the West Antarctic ice sheet are deflating rapidly, very likely due to a change in the flux of oceanic heat to the undersides of the floating ice shelves. The final section on modelling feedbacks from the ocean to climate change identifies limitations and priorities for model development and associated observations. Considering the importance of the oceans to climate change and our limited understanding of climate-related ocean processes, our ability to measure the changes that are taking place are conspicuously inadequate. The chapter highlights the need for a comprehensive, adequately funded and globally extensive ocean observing system to be implemented and sustained as a high priority. Unless feedbacks from the oceans to climate change are adequately included in climate change models, it is possible that the mitigation actions needed to stabilise CO2 and limit temperature rise over the next century will be underestimated.


Assuntos
Mudança Climática , Monitoramento Ambiental/métodos , Movimentos do Ar , Animais , Regiões Antárticas , Regiões Árticas , Atmosfera , Dióxido de Carbono , Ecossistema , Oceanografia , Oceanos e Mares , Movimentos da Água
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...