Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 4 de 4
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
PLoS One ; 12(11): e0188458, 2017.
Artigo em Inglês | MEDLINE | ID: mdl-29161311

RESUMO

Plants are continually exposed to a variety of pathogenic organisms, including bacteria, fungi and viruses. In response to these assaults, plants have developed various defense pathways to protect themselves from pathogen invasion. An understanding of the expression and regulation of genes involved in defense signaling is essential to controlling plant disease. ATL9, an Arabidopsis RING zinc finger protein, is an E3 ubiquitin ligase that is induced by chitin and involved in basal resistance to the biotrophic fungal pathogen, Golovinomyces cichoracearum (G. cichoracearum). To better understand the expression and regulation of ATL9, we studied its expression pattern and the functions of its different protein domains. Using pATL9:GUS transgenic Arabidopsis lines we found that ATL9 is expressed in numerous tissues at various developmental stages and that GUS activity was induced rapidly upon wounding. Using a GFP control protein, we showed that ATL9 is a short-lived protein within plant cells and it is degraded via the ubiquitin-proteasome pathway. ATL9 contains two transmembrane domains (TM), a RING zinc-finger domain, and a PEST domain. Using a series of deletion mutants, we found that the PEST domain and the RING domain have effects on ATL9 degradation. Further infection assays with G. cichoracearum showed that both the RING domain and the TM domains are important for ATL9's resistance phenotype. Interestingly, the PEST domain was also shown to be significant for resistance to fungal pathogens. This study demonstrates that the PEST domain is directly coupled to plant defense regulation and the importance of protein degradation in plant immunity.


Assuntos
Resistência à Doença/genética , Doenças das Plantas/genética , Plantas Geneticamente Modificadas/genética , Ubiquitina-Proteína Ligases/genética , Arabidopsis/genética , Arabidopsis/microbiologia , Quitina/química , Fungos/patogenicidade , Regulação da Expressão Gênica de Plantas , Doenças das Plantas/microbiologia , Plantas Geneticamente Modificadas/microbiologia , Domínios Proteicos/genética , Proteólise , Deleção de Sequência , Ubiquitina-Proteína Ligases/biossíntese
2.
Methods Mol Biol ; 1114: 339-52, 2014.
Artigo em Inglês | MEDLINE | ID: mdl-24557914

RESUMO

Engineered nucleases have been used to generate many model organisms and show great promise for therapeutic genome editing. Current methods to evaluate the activity of these nucleases can be laborious and often are hampered by readouts with small signals and a significant amount of background noise. We present a simple method that utilizes the established single-strand annealing (SSA) assay coupled with a luciferase assay to generate a high-throughput analysis of nuclease activity. Luciferase reporters provide a higher signal and lower background levels than fluorescent reporters. We engineered a commercially available luciferase plasmid (pGL4.51, Promega) to generate a set of nuclease target plasmids that produce a high signal and activity that correlates well with in vitro data. The SSA luciferase assay can discriminate between nucleases that give similar signals with other nuclease activity assays. The target plasmid and nucleases are transfected into cells and are generally cultured for 2 days. Luciferase activity is quantified in the same cell culture plate--streamlining the process from transfection to assay. We have used this robust process to investigate the activity of zinc finger nucleases (ZFNs) and transcription activated-like effector nucleases (TALENs).


Assuntos
Clivagem do DNA , Endonucleases/metabolismo , Expressão Gênica , Genes Reporter , Ensaios de Triagem em Larga Escala , Luciferases/genética , Dedos de Zinco/fisiologia , Células HEK293 , Humanos
3.
Nucleic Acids Res ; 42(6): e47, 2014 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-24442582

RESUMO

Transcription activator-like effector nucleases (TALENs) have become a powerful tool for genome editing due to the simple code linking the amino acid sequences of their DNA-binding domains to TALEN nucleotide targets. While the initial TALEN-design guidelines are very useful, user-friendly tools defining optimal TALEN designs for robust genome editing need to be developed. Here we evaluated existing guidelines and developed new design guidelines for TALENs based on 205 TALENs tested, and established the scoring algorithm for predicting TALEN activity (SAPTA) as a new online design tool. For any input gene of interest, SAPTA gives a ranked list of potential TALEN target sites, facilitating the selection of optimal TALEN pairs based on predicted activity. SAPTA-based TALEN designs increased the average intracellular TALEN monomer activity by >3-fold, and resulted in an average endogenous gene-modification frequency of 39% for TALENs containing the repeat variable di-residue NK that favors specificity rather than activity. It is expected that SAPTA will become a useful and flexible tool for designing highly active TALENs for genome-editing applications. SAPTA can be accessed via the website at http://baolab.bme.gatech.edu/Research/BioinformaticTools/TAL_targeter.html.


Assuntos
Proteínas de Ligação a DNA/metabolismo , Desoxirribonucleases/metabolismo , Software , Algoritmos , Sequência de Bases , DNA/química , DNA/metabolismo , Células HEK293 , Humanos
4.
Nucleic Acids Res ; 41(20): 9584-92, 2013 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-23939622

RESUMO

The ability to precisely modify endogenous genes can significantly facilitate biological studies and disease treatment, and the clustered regularly interspaced short palindromic repeats (CRISPR) systems have the potential to be powerful tools for genome engineering. However, the target specificity of CRISPR systems is largely unknown. Here we demonstrate that CRISPR/Cas9 systems targeting the human hemoglobin ß and C-C chemokine receptor type 5 genes have substantial off-target cleavage, especially within the hemoglobin δ and C-C chemokine receptor type 2 genes, respectively, causing gross chromosomal deletions. The guide strands of the CRISPR/Cas9 systems were designed to have a range of mismatches with the sequences of potential off-target sites. Off-target analysis was performed using the T7 endonuclease I mutation detection assay and Sanger sequencing. We found that the repair of the on-and off-target cleavage resulted in a wide variety of insertions, deletions and point mutations. Therefore, CRISPR/Cas9 systems need to be carefully designed to avoid potential off-target cleavage sites, including those with mismatches to the 12-bases proximal to the guide strand protospacer-adjacent motif.


Assuntos
Sistemas CRISPR-Cas , Clivagem do DNA , Receptores CCR5/genética , Globinas beta/genética , Proteínas Associadas a CRISPR/metabolismo , Deleção Cromossômica , Endodesoxirribonucleases/metabolismo , Loci Gênicos , Células HEK293 , Humanos
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...