Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Artigo em Russo | MEDLINE | ID: mdl-38334731

RESUMO

Theranostics combines diagnostics and therapeutic exposure. Regarding glioblastomas, theranostics solves the problem of detecting and destroying tumor stem cells resistant to irradiation and chemotherapy and causing tumor recurrence. Transmembrane surface antigen CD133 is considered as a potential marker of tumor stem cells. OBJECTIVE: To detect CD133 in patient-derived glioblastoma continuous cell cultures using fluorescence microscopy and modified aptamers (molecular recognition elements) anti-CD133. MATERIAL AND METHODS: To detect CD133, we used mousey fluorescence monoclonal antibodies anti-CD133 MA1-219, FAM-modified DNA aptamers anti-CD133 AP-1-M and Cs5. Non-aptamer DNA oligonucleotide NADO was used as a negative control. Detection was performed for three samples of patient-derived glioblastoma continuous cell cultures coded as 1548, 1721 and 1793. RESULTS: MA1-219 antibodies brightly stained cell culture 1548, to a lesser extent - 1721. There was diffuse staining of cell culture 1793. Cs5-FAM aptamer stained cells in a similar way, but much weaker. AP-1-M-FAM aptamer interacted with cells even weaker and diffusely stained only cell culture 1793. Non-aptamer NADO did not stain cell culture 1548 and very weakly diffusely stained cell culture 1793. CONCLUSION: For both molecular recognition elements (MA1-219 antibody and Cs5 aptamer), 3 cell culture samples can be arranged in the following order possibly reflecting CD133 status decrease: strong signal for cell culture 1548, much weaker for 1721, even weaker for 1793. Only cell culture 1548 can be considered CD133 positive with combination of Cs5+ and NADO signals. Cell culture 1793 is CD133 false positive with combination of Cs5+ and NADO+ signals.


Assuntos
Neoplasias Encefálicas , Glioblastoma , Humanos , Antígenos de Superfície/análise , Neoplasias Encefálicas/genética , Técnicas de Cultura de Células , Linhagem Celular Tumoral , Glioblastoma/genética , Glicoproteínas/genética , Glicoproteínas/metabolismo , Oligonucleotídeos , Fator de Transcrição AP-1 , Medicina de Precisão
2.
Artigo em Russo | MEDLINE | ID: mdl-38334730

RESUMO

Targeted delivery of chemotherapeutic agents with aptamers is a very effective method increasing therapeutic index compared to non-targeted drugs. OBJECTIVE: To study the effectiveness of in vitro therapeutic effect of covalently conjugated GR20 DNA aptamer with doxorubicin on glioblastoma cells compared to reference culture of human fibroblasts. MATERIAL AND METHODS: A Sus/fP2 cell culture was obtained from glioblastoma tissue sample to analyze the effectiveness of conjugate. A linear culture of human dermal fibroblasts (mesenchymal stem cells) DF1 was used as a control. To assess antiproliferative activity of covalently conjugated GR20 aptamer with doxorubicin, we used the MTS test. The Cell Index was measured using the xCelligence S16 cell analyzer assessing viability of cell cultures by recording changes in real time. RESULTS: Human glioblastoma Sus/fP2 cells reduce own proliferative potential by 80% when exposed to doxorubicin (0.5 µM, 72 hours, MTS test), by 9% when exposed to GR20 aptamer (10 µM, 72 hours, MTS test) and by 26% when exposed to covalently conjugated DOX-GR20 (0.5 µM, 72 hours, MTS test). A long-term study of proliferative potential of Sus/fP2 cells on the xCelligence S16 analyzer revealed a significant decrease in the number of cells under the effect of doxorubicin and covalently conjugated DOX-GR20. Effectiveness of covalently conjugated DOX-GR20 is halved. GR20 aptamer at a concentration of 10 µM and its conjugate with doxorubicin DOX-GR20 at a concentration of 1 µM have no negative effect on cells of the control culture of DF1 fibroblasts, while doxorubicin is toxic for these cells. MTS test and xCelligence S16 cell analyzer found no decrease in metabolic activity of DF1 cells and their ability to proliferate. CONCLUSION: We established obvious antiproliferative effect of covalent conjugate DOX-GR20 on continuous human glioblastoma cell culture Sus/fP2 without toxic effect on the reference culture (dermal fibroblasts DF1).


Assuntos
Aptâmeros de Nucleotídeos , Glioblastoma , Humanos , Aptâmeros de Nucleotídeos/metabolismo , Aptâmeros de Nucleotídeos/farmacologia , Glioblastoma/tratamento farmacológico , Linhagem Celular Tumoral , Doxorrubicina/farmacologia , Doxorrubicina/metabolismo , Doxorrubicina/uso terapêutico , Sistemas de Liberação de Medicamentos/métodos
3.
Biochemistry (Mosc) ; 83(10): 1161-1172, 2018 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-30472954

RESUMO

Aptamers are widely used as molecular recognition elements for detecting and blocking functional biological molecules. Since the common "alphabet" of DNA and RNA consists of only four letters, the chemical diversity of aptamers is less than the diversity of protein recognition elements built of 20 amino acids. Chemical modification of nucleotides enlarges the potential of DNA/RNA aptamers. This review describes the latest achievements in a variety of approaches to aptamers selection with an extended genetic alphabet.


Assuntos
Aptâmeros de Nucleotídeos/química , Nucleotidases/química , Técnica de Seleção de Aptâmeros , Aminoácidos/química , Pareamento de Bases , Química Click , Desoxirribose/química , Oligonucleotídeos/química
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...