Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 5 de 5
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
ACS Appl Bio Mater ; 6(5): 1755-1762, 2023 05 15.
Artigo em Inglês | MEDLINE | ID: mdl-37067245

RESUMO

Fibronectin (FN) mediates cell-material interactions during events such as tissue repair, and therefore the biomimetic modeling of this protein in vitro benefits regeneration. The nature of the interface is crucial in determining cell adhesion, morphology, and differentiation. Poly(ethyl acrylate) (PEA) spontaneously organizes FN into biological nanonetworks, resulting in exceptional bone regeneration in animal models. Spontaneous network organization of FN is also observed in poly(buthyl acrylate) (PBA) substrates that have higher surface mobility than PEA. C2C12 myoblasts differentiate efficiently on PEA and PBA substrates. In this study, we investigate if intermediate surface mobilities between PEA and PBA induce cell differentiation more efficiently than PEA. A family of P(EA-co-BA) copolymers were synthesized in the entire range of compositions to finely tune surface mobility between PEA and PBA. Surface characterization demonstrates that FN mobility steadily increased with the PBA content. All compositions allowed the biological organization of FN with similar exposure of cell binding domains. C2C12 myoblasts adhered well in all the materials, with higher focal adhesions in PEA and PBA. The increase of the interfacial mobility had an impact in cell adhesion by increasing the number of FAs per cell. In addition, cell differentiation decreased proportionally with surface mobility, from PEA to PBA.


Assuntos
Acrilatos , Animais , Adesão Celular , Diferenciação Celular , Acrilatos/farmacologia
2.
J Biomed Mater Res B Appl Biomater ; 108(4): 1428-1438, 2020 05.
Artigo em Inglês | MEDLINE | ID: mdl-31520507

RESUMO

The objective of this study was to test a regenerative medicine strategy for the regeneration of articular cartilage. This approach combines microfracture of the subchondral bone with the implant at the site of the cartilage defect of a supporting biomaterial in the form of microspheres aimed at creating an adequate biomechanical environment for the differentiation of the mesenchymal stem cells that migrate from the bone marrow. The possible inflammatory response to these biomaterials was previously studied by means of the culture of RAW264.7 macrophages. The microspheres were implanted in a 3 mm-diameter defect in the trochlea of the femoral condyle of New Zealand rabbits, covering them with a poly(l-lactic acid) (PLLA) membrane manufactured by electrospinning. Experimental groups included a group where exclusively PLLA microspheres were implanted, another group where a mixture of 50/50 microspheres of PLLA (hydrophobic and rigid) and others of chitosan (a hydrogel) were used, and a third group used as a control where no material was used and only the membrane was covering the defect. The histological characteristics of the regenerated tissue have been evaluated 3 months after the operation. We found that during the regeneration process the microspheres, and the membrane covering them, are displaced by the neoformed tissue in the regeneration space toward the subchondral bone region, leaving room for the formation of a tissue with the characteristics of hyaline cartilage.


Assuntos
Materiais Biocompatíveis , Cartilagem Hialina/metabolismo , Articulação do Joelho/metabolismo , Microesferas , Poliésteres , Animais , Materiais Biocompatíveis/química , Materiais Biocompatíveis/farmacologia , Masculino , Camundongos , Poliésteres/química , Poliésteres/farmacologia , Células RAW 264.7 , Coelhos
3.
J Ophthalmol ; 2016: 4041767, 2016.
Artigo em Inglês | MEDLINE | ID: mdl-28116139

RESUMO

Corneal ectatic disorders are characterized by a progressive weakening of the tissue due to biomechanical alterations of the corneal collagen fibers. Carbon nanostructures, mainly carbon nanotubes (CNTs) and graphene, are nanomaterials that offer extraordinary mechanical properties and are used to increase the rigidity of different materials and biomolecules such as collagen fibers. We conducted an experimental investigation where New Zealand rabbits were treated with a composition of CNTs suspended in balanced saline solution which was applied in the corneal tissue. Biocompatibility of the composition was assessed by means of histopathology analysis and mechanical properties by stress-strain measurements. Histopathology samples stained with blue Alcian showed that there were no fibrous scaring and no alterations in the mucopolysaccharides of the stroma. It also showed that there were no signs of active inflammation. These were confirmed when Masson trichrome staining was performed. Biomechanical evaluation assessed by means of tensile test showed that there is a trend to obtain higher levels of rigidity in those corneas implanted with CNTs, although these changes are not statistically significant (p > 0.05). Implanting CNTs is biocompatible and safe procedure for the corneal stroma which can lead to an increase in the rigidity of the collagen fibers.

4.
Int J Artif Organs ; 38(4): 210-23, 2015 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-25952995

RESUMO

PURPOSE: Tissue engineering techniques were used to study cartilage repair over a 12-month period in a rabbit model. METHODS: A full-depth chondral defect along with subchondral bone injury were originated in the knee joint, where a biostable porous scaffold was implanted, synthesized of poly(ethyl acrylate-co-hydroxyethyl acrylate) copolymer. Morphological evolution of cartilage repair was studied 1 and 2 weeks, and 1, 3, and 12 months after implantation by histological techniques. The 3-month group was chosen to compare cartilage repair to an additional group where scaffolds were preseeded with allogeneic chondrocytes before implantation, and also to controls, who underwent the same surgery procedure, with no scaffold implantation. RESULTS: Neotissue growth was first observed in the deepest scaffold pores 1 week after implantation, which spread thereafter; 3 months later scaffold pores were filled mostly with cartilaginous tissue in superficial and middle zones, and with bone tissue adjacent to subchondral bone. Simultaneously, native chondrocytes at the edges of the defect started to proliferate 1 week after implantation; within a month those edges had grown centripetally and seemed to embed the scaffold, and after 3 months, hyaline-like cartilage was observed on the condylar surface. Preseeded scaffolds slightly improved tissue growth, although the quality of repair tissue was similar to non-preseeded scaffolds. Controls showed that fibrous cartilage was mainly filling the repair area 3 months after surgery. In the 12-month group, articular cartilage resembled the untreated surface. CONCLUSIONS: Scaffolds guided cartilaginous tissue growth in vivo, suggesting their importance in stress transmission to the cells for cartilage repair.


Assuntos
Acrilatos/uso terapêutico , Cartilagem Articular , Regeneração , Engenharia Tecidual/métodos , Alicerces Teciduais , Animais , Materiais Biocompatíveis/uso terapêutico , Cartilagem Articular/lesões , Cartilagem Articular/fisiologia , Cartilagem Articular/cirurgia , Condrócitos/fisiologia , Modelos Animais de Doenças , Regeneração Tecidual Guiada/métodos , Macrófagos/metabolismo , Teste de Materiais/métodos , Coelhos , Regeneração/efeitos dos fármacos , Regeneração/fisiologia
5.
J Biomed Mater Res A ; 103(3): 1106-18, 2015 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-24910285

RESUMO

Currently available keratoprosthesis models (nonbiological corneal substitutes) have a less than 75% graft survival rate at 2 years. We aimed at developing a model for keratoprosthesis based on the use of poly(ethyl acrylate) (PEA)-based copolymers, extracellular matrix-protein coating and colonization with adipose-derived mesenchymal stem cells. Human adipose tissue derived mesenchymal stem cells (h-ADASC) colonization efficiency of seven PEA-based copolymers in combination with four extracellular matrix coatings were evaluated in vitro. Then, macroporous membranes composed of the optimal PEA subtypes and coating proteins were implanted inside rabbit cornea. After a 3-month follow-up, the animals were euthanized, and the clinical and histological biointegration of the implanted material were assessed. h-ADASC adhered and survived when cultured in all PEA-based macroporous membranes. The addition of high hydrophilicity to PEA membranes decreased h-ADASC colonization in vitro. PEA-based copolymer containing 10% hydroxyethyl acrylate (PEA-HEA10) or 10% acrylic acid (PEA-AAc10) monomeric units showed the best cellular colonization rates. Collagen plus keratan sulfate-coated polymers demonstrated enhanced cellular colonization respect to fibronectin, collagen, or uncoated PEAs. In vivo implantation of membranes resulted in an extrusion rate of 72% for PEA, 50% for PEA-AAc10, but remarkably of 0% for PEA-HEA10. h-ADASC survival was demonstrated in all the membranes after 3 months follow-up. A slight reduction in the extrusion rate of h-ADASC colonized materials was observed. No significant differences between the groups with and without h-ADASC were detected respect to transparency or neovascularization. We propose PEA with low hydroxylation as a scaffold for the anchoring ring of future keratoprosthesis.


Assuntos
Resinas Acrílicas/química , Bioprótese , Córnea/cirurgia , Matriz Extracelular/química , Membranas Artificiais , Células-Tronco Mesenquimais/metabolismo , Tecido Adiposo/citologia , Tecido Adiposo/metabolismo , Animais , Células Cultivadas , Colágeno/química , Córnea/metabolismo , Doenças da Córnea/metabolismo , Doenças da Córnea/cirurgia , Modelos Animais de Doenças , Feminino , Humanos , Células-Tronco Mesenquimais/citologia , Coelhos , Alicerces Teciduais/química
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...