Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 16 de 16
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Harmful Algae ; 121: 102367, 2023 01.
Artigo em Inglês | MEDLINE | ID: mdl-36639186

RESUMO

Cyanobacterial blooms imperil the use of freshwater around the globe and present challenges for water management. Studies have suggested that blooms are trigged by high temperatures and nutrient concentrations. While the roles of nitrogen and phosphorus have long been debated, cyanobacterial dominance in phytoplankton has widely been associated with climate warming. However, studies at large geographical scales, covering diverse climate regions and lake depths, are still needed to clarify the drivers of cyanobacterial success. Here, we analyzed data from 464 lakes covering a 14,000 km north-south gradient in the Americas and three lake depth categories. We show that there were no clear trends in cyanobacterial biomass (as biovolume) along latitude or climate gradients, with the exception of lower biomass in polar climates. Phosphorus was the primary resource explaining cyanobacterial biomass in the Americas, while nitrogen was also significant but particularly relevant in very shallow lakes (< 3 m depth). Despite the assessed climatic gradient water temperature was only weakly related to cyanobacterial biomass, suggesting it is overemphasized in current discussions. Depth was critical for predicting cyanobacterial biomass, and shallow lakes proved more vulnerable to eutrophication. Among other variables analyzed, only pH was significantly related to cyanobacteria biomass, likely due to a biologically mediated positive feedback under high nutrient conditions. Solutions toward managing harmful cyanobacteria should thus consider lake morphometric characteristics and emphasize nutrient control, independently of temperature gradients, since local factors are more critical - and more amenable to controls - than global external forces.


Assuntos
Cianobactérias , Biomassa , Lagos , Nutrientes , Nitrogênio , Fósforo
2.
Sci Total Environ ; 838(Pt 2): 155938, 2022 Sep 10.
Artigo em Inglês | MEDLINE | ID: mdl-35580682

RESUMO

Anthropogenic stressors affect lakes around the world, ranging in scale from catchment-specific pollutants to the global impacts of climate change. Canada has a large number and diversity of lakes, yet it is not well understood how, where, and when human impacts have affected these lakes at a national scale. The NSERC Canadian Lake Pulse Network sought to create the first nationwide database of Canadian lake health, undertaking a multi-year survey of 664 lakes spanning 12 ecozones across Canada. A key objective of the network is to determine where, by how much, and why have Canadian lakes changed during the Anthropocene. To address this objective, we compared sedimentary chlorophyll a and diatoms from modern and pre-industrial sediment intervals of ~200 lakes. The lakes spanned a range of sizes, ecozones, and degrees of within-catchment land use change. We inferred the quantity of chlorophyll a, its isomers and main diagenetic products using visible reflectance spectroscopy. We found widespread increases in primary production since pre-industrial times. Primary production increased, on average, across all ecozones, human impact classes, and stratification classes. Likewise, an increase in planktonic diatom taxa over time was detected in the majority of sampled lakes, likely due to recent climate warming. However, regional factors (ecozones) explained the most variation in modern diatom species assemblages as well as their temporal turnover. Furthermore, lakes with high human impact (i.e., higher weighted proportions of human land use in the catchment) exhibited greater taxonomic turnover than lakes with a low human impact class. The greatest diatom turnover was found in the agriculture-rich Prairies and the lowest in the sparsely populated Boreal Shield and Taiga Cordillera ecozones. Overall, our study highlights that drivers operating at different geographic scales (i.e., climatic and land-use changes) have led to significant alterations in algal indicators since pre-industrial times across the country.


Assuntos
Diatomáceas , Lagos , Canadá , Clorofila A , Mudança Climática , Humanos
3.
Front Microbiol ; 13: 779505, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-35222324

RESUMO

Arctic lakes are experiencing increasingly shorter periods of ice cover due to accelerated warming at northern high latitudes. Given the control of ice cover thickness and duration over many limnological processes, these changes will have pervasive effects. However, due to their remote and extreme locations even first-order data on lake ecology is lacking for many ecosystems. The aim of this study was to characterize and compare the microbial communities of four closely spaced lakes in Stuckberry Valley (northern Ellesmere Island, Canadian Arctic Archipelago), in the coastal margin zone of the Last Ice Area, that differed in their physicochemical, morphological and catchment characteristics. We performed high-throughput amplicon sequencing of the V4 16S rRNA gene to provide inter- and intra-lake comparisons. Two deep (>25 m) and mostly oxygenated lakes showed highly similar community assemblages that were distinct from those of two shallower lakes (<10 m) with anoxic bottom waters. Proteobacteria, Verrucomicrobia, and Planctomycetes were the major phyla present in the four water bodies. One deep lake contained elevated proportions of Cyanobacteria and Thaumarchaeota that distinguished it from the others, while the shallow lakes had abundant communities of predatory bacteria, as well as microbes in their bottom waters that contribute to sulfur and methane cycles. Despite their proximity, our data suggest that local habitat filtering is the primary determinant of microbial diversity in these systems. This study provides the first detailed examination of the microbial assemblages of the Stuckberry lakes system, resulting in new insights into the microbial ecology of the High Arctic.

4.
Sci Adv ; 7(38): eabh3233, 2021 Sep 17.
Artigo em Inglês | MEDLINE | ID: mdl-34524843

RESUMO

Despite evidence for microbial endemism, an understanding of the impact of geological and paleoclimate events on the evolution of regional protist communities remains elusive. Here, we provide insights into the biogeographical history of Antarctic freshwater diatoms, using lacustrine fossils from mid-Miocene and Quaternary Antarctica, and dovetail this dataset with a global inventory of modern freshwater diatom communities. We reveal the existence of a diverse mid-Miocene diatom flora bearing similarities with several former Gondwanan landmasses. Miocene cooling and Plio-Pleistocene glaciations triggered multiple extinction waves, resulting in the selective depauperation of this flora. Although extinction dominated, in situ speciation and new colonizations ultimately shaped the species-poor, yet highly adapted and largely endemic, modern Antarctic diatom flora. Our results provide a more holistic view on the scale of biodiversity turnover in Neogene and Pleistocene Antarctica than the fragmentary perspective offered by macrofossils and underscore the sensitivity of lacustrine microbiota to large-scale climate perturbations.

5.
Environ Pollut ; 284: 117354, 2021 Sep 01.
Artigo em Inglês | MEDLINE | ID: mdl-34030084

RESUMO

Glyphosate herbicide is ubiquitously used in agriculture and weed control. It has now been identified in aquatic ecosystems worldwide, where numerous studies have suggested that it may have both suppressive and stimulatory effects on diverse non-target organisms. We cultured natural biofilms from a hypereutrophic environment to test the effects on periphytic diatoms of exposure to a glyphosate-based herbicide formulation at concentrations from 0 to 10 mg L-1 of active ingredient. There were clear and significant differences between treatments in diatom community structure after the 15-day experiments. Diversity increased more in low glyphosate treatments relative to higher concentrations, and compositional analyses indicated statistically significant differences between glyphosate treatments. The magnitude of change observed was significantly correlated with glyphosate-based herbicide concentration. Our results show that glyphosate-based herbicides have species-selective effects on benthic diatoms that may significantly alter trajectories of community development and therefore may affect benthic habitats and whole ecosystem function.


Assuntos
Diatomáceas , Herbicidas , Poluentes Químicos da Água , Biofilmes , Ecossistema , Glicina/análogos & derivados , Herbicidas/análise , Herbicidas/toxicidade , Poluentes Químicos da Água/análise , Poluentes Químicos da Água/toxicidade , Glifosato
6.
Proc Biol Sci ; 287(1929): 20201185, 2020 06 24.
Artigo em Inglês | MEDLINE | ID: mdl-32576110

RESUMO

Lake Hazen, the High Arctic's largest lake, has received an approximately 10-fold increase in glacial meltwater since its catchment glaciers shifted from net mass gain to net mass loss in 2007 common era (CE), concurrent with recent warming. Increased glacial meltwater can alter the ecological functioning of recipient aquatic ecosystems via changes to nutrient budgets, turbidity and thermal regimes. Here, we examine a rare set of five high-resolution sediment cores collected in Lake Hazen between 1990 and 2017 CE to investigate the influence of increased glacial meltwater versus alterations to lake ice phenology on ecological change. Subfossil diatom assemblages in all cores show two major shifts over the past approximately 200 years including: (i) a proliferation of pioneering, benthic taxa at approximately 1900 CE from previously depauperate populations; and (ii) a rise in planktonic taxa beginning at approximately 1980 CE to present-day dominance. The topmost intervals from each sequentially collected core provide exact dates and demonstrate that diatom regime shifts occurred decades prior to accelerated glacial inputs. These data show that diatom assemblages in Lake Hazen are responding primarily to intrinsic lake factors linked to decreasing duration of lake ice and snow cover rather than to limnological impacts associated with increased glacial runoff.


Assuntos
Mudança Climática , Monitoramento Ambiental , Camada de Gelo , Lagos , Regiões Árticas , Diatomáceas , Ecossistema , Plâncton
7.
Glob Chang Biol ; 26(4): 2270-2279, 2020 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-31995661

RESUMO

Ecotones mark zones of rapid change in ecological structure at various spatial scales. They are believed to be particularly susceptible to shifts caused by environmental transformation, making them key regions for studying the effects of global change. Here, we explored the variation in assemblage structure of aquatic primary producer and consumer communities across latitudinal transects in northeastern North America (Québec-Labrador) to identify spatial patterns in biodiversity that indicated the location of transition zones across the landscape. We analyzed species richness and the cumulative rate of compositional change (expressed as beta-diversity) of diatoms and chironomids to detect any abrupt shifts in the rate of spatial taxonomic turnover. We used principal coordinates analysis to estimate community turnover with latitude, then applied piecewise linear regression to assess the position of ecotones. Statistically significant changes in assemblage composition occurred at 52 and 55°N, corresponding to the transition between closed- and open-crown forest, and to the southern onset of the forest tundra (i.e., the forest limit), respectively. The spatial distribution of ecotones was most strongly related to air temperature for chironomids and to vegetation- and soil-related chemical attributes of lake water for diatoms, including dissolved organic carbon content and water color. Lakes at mid- to high-latitudes currently face pressures from rapidly rising temperatures, accompanied by large increases in organic carbon inputs from their catchments, often leading to browning and its associated effects. The biota at the base of food webs in lakes located in transition zones are disproportionately affected by the cascading effects of these multi-factorial changes, concurrent with pronounced terrestrial greening observed in these regions. Similar patterns of biotic shifts have been observed along alpine aquatic transects, indicating the potential for widespread restructuring of cold, high-altitude and high-latitude freshwater communities due to global change.

8.
Sci Total Environ ; 695: 133668, 2019 Dec 10.
Artigo em Inglês | MEDLINE | ID: mdl-31419692

RESUMO

The distribution and quality of water resources vary dramatically across Canada, and human impacts such as land-use and climate changes are exacerbating uncertainties in water supply and security. At the national level, Canada has no enforceable standards for safe drinking water and no comprehensive water-monitoring program to provide detailed, timely reporting on the state of water resources. To provide Canada's first national assessment of lake health, the NSERC Canadian Lake Pulse Network was launched in 2016 as an academic-government research partnership. LakePulse uses traditional approaches for limnological monitoring as well as state-of-the-art methods in the fields of genomics, emerging contaminants, greenhouse gases, invasive pathogens, paleolimnology, spatial modelling, statistical analysis, and remote sensing. A coordinated sampling program of about 680 lakes together with historical archives and a geomatics analysis of over 80,000 lake watersheds are used to examine the extent to which lakes are being altered now and in the future, and how this impacts aquatic ecosystem services of societal importance. Herein we review the network context, objectives and methods.

9.
Sci Total Environ ; 693: 133414, 2019 Nov 25.
Artigo em Inglês | MEDLINE | ID: mdl-31377351

RESUMO

Mixing regime and CO2 availability may control cyanobacterial blooms in polymictic lakes, but the underlying mechanisms still remain unclear. We integrated detailed results from a natural experiment comprising an average-wet year (2011) and one with heat waves (2012), a long-term meteorological dataset (1960-2010), historical phosphorus concentrations and sedimentary pigment records, to determine the mechanistic controls of cyanobacterial blooms in a eutrophic polymictic lake. Intense warming in 2012 was associated with: 1) increased stability of the water column with buoyancy frequencies exceeding 40 cph at the surface, 2) high phytoplankton biomass in spring (up to 125 mg WW L-1), 3) reduced downward transport of heat and 4) depleted epilimnetic CO2 concentrations. CO2 depletion was maintained by intense uptake by phytoplankton (influx up to 30 mmol m-2 d-1) in combination with reduced, internal and external, carbon inputs during dry, stratified periods. These synergistic effects triggered bloom of buoyant cyanobacteria (up to 300 mg WW L-1) in the hot year. Complementary evidence from polynomial regression modelling using historical data and pigment record revealed that warming explains 78% of the observed trends in cyanobacterial biomass, whereas historical phosphorus concentration only 10% thereof. Together the results from the natural experiment and the long-term record indicate that effects of hotter and drier climate are likely to increase water column stratification and decrease CO2 availability in eutrophic polymictic lakes. This combination will catalyze blooms of buoyant cyanobacteria.


Assuntos
Mudança Climática , Cianobactérias/fisiologia , Temperatura Alta/efeitos adversos , Lagos/análise , Fitoplâncton/fisiologia , Dióxido de Carbono/análise , Sedimentos Geológicos/química , Lagos/química , Lagos/microbiologia , Fósforo/análise , Quebeque , Estações do Ano
10.
Sci Rep ; 8(1): 17279, 2018 11 22.
Artigo em Inglês | MEDLINE | ID: mdl-30467408

RESUMO

The caldera collapse of Deception Island Volcano, Antarctica, was comparable in scale to some of the largest eruptions on Earth over the last several millennia. Despite its magnitude and potential for far-reaching environmental effects, the age of this event has never been established, with estimates ranging from the late Pleistocene to 3370 years before present. Here we analyse nearby lake sediments in which we identify a singular event produced by Deception Island's caldera collapse that occurred 3980 ± 125 calibrated years before present. The erupted tephra record the distinct geochemical composition of ejecta from the caldera-forming eruption, whilst an extreme seismic episode is recorded by lake sediments immediately overlying the collapse tephra. The newly constrained caldera collapse is now the largest volcanic eruption confirmed in Antarctica during the Holocene. An examination of palaeorecords reveals evidence in marine and lacustrine sediments for contemporaneous seismicity around the Antarctic Peninsula; synchronous glaciochemical volcanic signatures also record the eruption in ice cores spread around Antarctica, reaching >4600 km from source. The widespread footprint suggests that this eruption would have had significant climatic and ecological effects across a vast area of the south polar region.

11.
Mol Ecol ; 23(23): 5791-802, 2014 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-25346253

RESUMO

Ancient DNA (aDNA) analysis of lake sediments is a promising tool for detecting shifts in past microbial assemblages in response to changing environmental conditions. We examined sediment core samples from subtropical, freshwater Laguna Blanca (Uruguay), which has been severely affected by cultural eutrophication since 1960 and where cyanobacterial blooms, particularly those of the saxitoxin-producer Cylindrospermopsis raciborskii, have been reported since the 1990s. Samples corresponding to ~1846, 1852, 2000 and 2007 AD were selected to perform denaturing gradient gel electrophoresis (DGGE) analysis of the 16S-23S rRNA intergenic transcribed spacer (ribosomal ITS) to compare their prokaryotic assemblage composition. Each stratum showed different ITS patterns, but the composition of 21st century samples was clearly different than those of mid-19th century. This compositional change was correlated with shifts in sediment organic matter and chlorophyll a content, which were significantly higher in recent samples. The presence of saxitoxin-producing cyanobacteria was addressed by quantitative real-time PCR of the sxtU gene involved in toxin biosynthesis. This gene was present only in recent samples, for which clone libraries and ITS sequencing indicated the presence of Cyanobacteria. Phylogenetic analyses identified C. raciborskii only in the 2000 sample, shortly after several years when blooms were recorded in the lake. These data suggest the utility of aDNA for the reconstruction of microbial assemblage shifts in subtropical lakes, at least on centennial scales. The application of aDNA analysis to genes involved in cyanotoxin synthesis extends the applicability of molecular techniques in palaeolimnological studies to include key microbial community characteristics of great scientific and social interest.


Assuntos
Cianobactérias/genética , Água Doce/microbiologia , Microbiologia da Água , Clorofila/análise , Clorofila A , Cianobactérias/isolamento & purificação , DNA Bacteriano/genética , DNA Espaçador Ribossômico/genética , Ecossistema , Sedimentos Geológicos/microbiologia , Lagos/microbiologia , Filogenia , RNA Ribossômico 16S/genética , RNA Ribossômico 23S/genética , Saxitoxina/genética , Análise de Sequência de DNA , Uruguai
12.
J Phycol ; 50(4): 610-23, 2014 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-26988446

RESUMO

Ecotones are key areas for the detection of global change because many are predicted to move with shifts in climate. Prince of Wales Island, in the Canadian Arctic Archipelago, spans the transition between mid- to high-Arctic ecoregions. We analyzed limnological variables and recent diatom assemblages from its lakes and ponds to determine if assemblages reflected this ecotone. Limnological gradients were short, and water chemistry explained 20.0% of diatom variance in a redundancy analysis (RDA), driven primarily by dissolved organic carbon, Ca and SO4 . Most taxa were small, benthic forms; key taxa such as planktonic Cyclotella species were restricted to the warmer, southern portion of the study area, while benthic Staurosirella were associated with larger, ice-dominated lakes. Nonetheless, there were no significant changes in diatom assemblages across the mid- to high-Arctic ecoregion boundary. We combined our data set with one from nearby Cornwallis Island to expand the study area and lengthen its environmental gradients. Within this expanded data set, 40.6% of the diatom variance was explained by a combination of water chemistry and geographic variables, and significant relationships were revealed between diatom distributions and key limnological variables, including pH, specific conductivity, and chl-a. Using principal coordinates analysis, we estimated community turnover with latitude and applied piecewise linear regression to determine diatom ecotone positions. A pronounced transition was present between Prince of Wales Island and the colder, more northerly Cornwallis Island. These data will be important in detecting any future northward ecotone movement in response to predicted Arctic climate warming in this highly sensitive region.

13.
FEMS Microbiol Ecol ; 79(3): 594-607, 2012 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-22092489

RESUMO

The cyanobacteria Planktothrix agardhii and Cylindrospermopsis raciborskii are bloom-forming species common in eutrophic freshwaters. These filamentous species share certain physiological traits which imply that they might flourish under similar environmental conditions. We compared the distribution of the two species in a large database (940 samples) covering different climatic regions and the Northern and Southern hemispheres, and carried out laboratory experiments to compare their morphological and physiological responses. The environmental ranges of the two species overlapped with respect to temperature, light and total phosphorus (TP); however, they responded differently to environmental gradients; C. raciborskii biovolume changed gradually while P. agardhii shifted sharply from being highly dominated to a rare component of the phytoplankton. As expected, P. agardhii dominates the phytoplankton with high TP and low light availability conditions. Contrary to predictions, C. raciborskii succeeded in all climates and at temperatures as low as 11 °C. Cylindrospermopsis raciborskii had higher phenotypic plasticity than P. agardhii in terms of pigments, individual size and growth rates. We conclude that the phenotypic plasticity of C. raciborskii could explain its ongoing expansion to temperate latitudes and suggest its future predominance under predicted climate-change scenarios.


Assuntos
Cianobactérias/crescimento & desenvolvimento , Água Doce/microbiologia , Clima , Cianobactérias/fisiologia , Cylindrospermopsis/crescimento & desenvolvimento , Cylindrospermopsis/fisiologia , Meio Ambiente , Eutrofização , Fitoplâncton/crescimento & desenvolvimento , Fitoplâncton/fisiologia , Temperatura
14.
Proc Natl Acad Sci U S A ; 108(47): 18899-904, 2011 Nov 22.
Artigo em Inglês | MEDLINE | ID: mdl-22025693

RESUMO

Ice shelves in the Arctic lost more than 90% of their total surface area during the 20th century and are continuing to disintegrate rapidly. The significance of these changes, however, is obscured by the poorly constrained ontogeny of Arctic ice shelves. Here we use the sedimentary record behind the largest remaining ice shelf in the Arctic, the Ward Hunt Ice Shelf (Ellesmere Island, Canada), to establish a long-term context in which to evaluate recent ice-shelf deterioration. Multiproxy analysis of sediment cores revealed pronounced biological and geochemical changes in Disraeli Fiord in response to the formation of the Ward Hunt Ice Shelf and its fluctuations through time. Our results show that the ice shelf was absent during the early Holocene and formed 4,000 years ago in response to climate cooling. Paleoecological data then indicate that the Ward Hunt Ice Shelf remained stable for almost three millennia before a major fracturing event that occurred ∼1,400 years ago. After reformation ∼800 years ago, freshwater was a constant feature of Disraeli Fiord until the catastrophic drainage of its epishelf lake in the early 21st century.


Assuntos
Mudança Climática/história , Sedimentos Geológicos/química , Camada de Gelo , Regiões Árticas , Carbono/análise , Cromatografia Líquida de Alta Pressão , Foraminíferos/citologia , Água Doce , Sedimentos Geológicos/microbiologia , História Antiga , História Medieval , Magnetismo , Nitrogênio/análise , Oceanografia/métodos , Pigmentos Biológicos/análise , Espectrometria por Raios X
15.
Environ Sci Technol ; 45(3): 964-70, 2011 Feb 01.
Artigo em Inglês | MEDLINE | ID: mdl-21210676

RESUMO

Mercury (Hg) profiles were compared to profiles of climate indicators including microfossil remains and algal-derived or S2 carbon (C) in dated sediment cores from 14 lakes spanning latitudinal and longitudinal gradients across the Canadian high and subarctic. Hg fluxes increased postindustrialization (post-∼1850) in 11 of these lakes (postindustrialization Hg fluxes (ΔHgF(F)) = 2-24 µg m(-2) y(-1)). Correction of HgF(F) for catchment contributions demonstrated that Hg deposition originating from catchment-independent factors, such as atmospheric deposition, increased since industrialization in all 14 lakes. Several of these lakes also showed postindustrial shifts in algal assemblages consistent with climate-induced changes. Eleven lakes showed post-1850s increases in S2F(F), suggesting that lake primary productivity has recently increased in the majority of our sites (ΔS2F(F) = 0.1-4 g m(-2) y(-1)). Other studies have interpreted significant relationships between Hg:S2 concentrations in Arctic sediment as support for the algal scavenging hypothesis, which postulates that Hg fluxes to Arctic sediments are largely driven by S2. However, in six of our lakes we observed no Hg:S2 relationship, and in one lake a significant negative Hg:S2 relationship was observed due to increased Hg and decreased S2 C deposition during the postindustrialization period. In six of the seven lakes where a significant positive Hg:S2 relationship was observed, algal assemblages either did not change through time or the timing of the shifts did not correspond to changes in Hg deposition. Our results demonstrate that, although Arctic lakes are experiencing a myriad of changes, including increased Hg and S2 deposition or changing algal assemblages, increased lake primary productivity does not appear to be driving changes in Hg fluxes to sediments.


Assuntos
Mudança Climática , Água Doce/química , Mercúrio/análise , Poluentes Químicos da Água/análise , Poluentes Atmosféricos/análise , Regiões Árticas , Atmosfera/química , Canadá , Monitoramento Ambiental , Sedimentos Geológicos/química
16.
Proc Natl Acad Sci U S A ; 102(12): 4397-402, 2005 Mar 22.
Artigo em Inglês | MEDLINE | ID: mdl-15738395

RESUMO

Fifty-five paleolimnological records from lakes in the circumpolar Arctic reveal widespread species changes and ecological reorganizations in algae and invertebrate communities since approximately anno Domini 1850. The remoteness of these sites, coupled with the ecological characteristics of taxa involved, indicate that changes are primarily driven by climate warming through lengthening of the summer growing season and related limnological changes. The widespread distribution and similar character of these changes indicate that the opportunity to study arctic ecosystems unaffected by human influences may have disappeared.


Assuntos
Clima Frio , Ecossistema , Efeito Estufa , Animais , Regiões Árticas , Biodiversidade , Eucariotos/isolamento & purificação , Água Doce , Invertebrados , Fatores de Tempo , Microbiologia da Água
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...