Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 33
Filtrar
Mais filtros










Intervalo de ano de publicação
1.
Biol Res ; 56(1): 27, 2023 May 25.
Artigo em Inglês | MEDLINE | ID: mdl-37226204

RESUMO

BACKGROUND: The underlying mechanism of Parkinson's disease are still unidentified, but excitotoxicity, oxidative stress, and neuroinflammation are considered key actors. Proliferator activated receptors (PPARs) are transcription factors involved in the control of numerous pathways. Specifically, PPARß/δ is recognized as an oxidative stress sensor, and we have previously reported that it plays a detrimental role in neurodegeneration. METHODS: Basing on this concept, in this work, we tested the potential effects of a specific PPARß/δ antagonist (GSK0660) in an in vitro model of Parkinson's disease. Specifically, live-cell imaging, gene expression, Western blot, proteasome analyses, mitochondrial and bioenergetic studies were performed. Since we obtained promising results, we tested this antagonist in a 6-hydroxydopamine hemilesioned mouse model. In the animal model, behavioral tests, histological analysis, immunofluorescence and western blot of substantia nigra and striatum upon GSK0660 were assayed. RESULTS: Our findings suggested that PPARß/δ antagonist has neuroprotective potential due to neurotrophic support, anti-apoptotic and anti-oxidative effects paralleled to an amelioration of mitochondria and proteasome activity. These findings are strongly supported also by the siRNA results demonstrating that by silencing PPARß/δ a significative rescue of the dopaminergic neurons was obtained, thus indicating an involvement of PPARß/δ in PD's pathogenesis. Interestingly, in the animal model, GSK0660 treatment confirmed neuroprotective effects observed in the in vitro studies. Neuroprotective effects were highlighted by the behavioural performance and apomorphine rotation tests amelioration and the reduction of dopaminergic neuronal loss. These data were also confirmed by imaging and western blotting, indeed, the tested compound decreased astrogliosis and activated microglia, concomitant with an upregulation of neuroprotective pathways. CONCLUSIONS: In summary, PPARß/δ antagonist displayed neuroprotective activities against 6-hydroxydopamine detrimental effects both in vitro and in vivo models of Parkinson's disease, suggesting that it may represent a novel therapeutic approach for this disorder.


Assuntos
Fármacos Neuroprotetores , PPAR beta , Doença de Parkinson , Animais , Camundongos , Fármacos Neuroprotetores/farmacologia , Doença de Parkinson/tratamento farmacológico , Oxidopamina , Complexo de Endopeptidases do Proteassoma
2.
Biol. Res ; 56: 27-27, 2023. tab, graf, ilus
Artigo em Inglês | LILACS | ID: biblio-1513739

RESUMO

BACKGROUND: The underlying mechanism of Parkinson's disease are still unidentified, but excitotoxicity, oxidative stress, and neuroinflammation are considered key actors. Proliferator activated receptors (PPARs) are transcription factors involved in the control of numerous pathways. Specifically, PPARß/δ is recognized as an oxidative stress sensor, and we have previously reported that it plays a detrimental role in neurodegeneration. METHODS: Basing on this concept, in this work, we tested the potential effects of a specific PPARß/δ antagonist (GSK0660) in an in vitro model of Parkinson's disease. Specifically, live-cell imaging, gene expression, Western blot, proteasome analyses, mitochondrial and bioenergetic studies were performed. Since we obtained promising results, we tested this antagonist in a 6-hydroxydopamine hemilesioned mouse model. In the animal model, behavioral tests, histological analysis, immunofluorescence and western blot of substantia nigra and striatum upon GSK0660 were assayed. RESULTS: Our findings suggested that PPARß/δ antagonist has neuroprotective potential due to neurotrophic support, anti-apoptotic and anti-oxidative effects paralleled to an amelioration of mitochondria and proteasome activity. These findings are strongly supported also by the siRNA results demonstrating that by silencing PPARß/δ a significative rescue of the dopaminergic neurons was obtained, thus indicating an involvement of PPARß/δ in PD's pathogenesis. Interestingly, in the animal model, GSK0660 treatment confirmed neuroprotective effects observed in the in vitro studies. Neuroprotective effects were highlighted by the behavioural performance and apomorphine rotation tests amelioration and the reduction of dopaminergic neuronal loss. These data were also confirmed by imaging and western blotting, indeed, the tested compound decreased astrogliosis and activated microglia, concomitant with an upregulation of neuroprotective pathways. CONCLUSIONS: In summary, PPARß/δ antagonist displayed neuroprotective activities against 6-hydroxydopamine detrimental effects both in vitro and in vivo models of Parkinson's disease, suggesting that it may represent a novel therapeutic approach for this disorder.


Assuntos
Animais , Camundongos , Doença de Parkinson/tratamento farmacológico , Fármacos Neuroprotetores/farmacologia , PPAR beta , Oxidopamina , Complexo de Endopeptidases do Proteassoma
3.
Sci Rep ; 10(1): 18337, 2020 10 27.
Artigo em Inglês | MEDLINE | ID: mdl-33110169

RESUMO

The progressive consumption growth of non-steroidal anti-inflammatory drugs (NSAIDs) has progressively raised the attention toward the gastrointestinal, renal, and cardiovascular toxicity. Increased risk of cardiovascular diseases was strictly associated with the usage of COX-2 selective NSAIDs. Other studies allowed to clarify that the cardiovascular risk is not limited to COX-2 selective but also extended to non-selective NSAIDs, such as Diclofenac and Ketoprofen. To date, although a less favorable cardiovascular risk profile for Diclofenac as compared to Ketoprofen is reported, the mechanisms through which NSAIDs cause adverse cardiovascular events are not entirely understood. The present study aimed to evaluate the effects of Ketoprofen in comparison with Diclofenac in immortalized human cardiomyocytes. The results obtained highlight the dose-dependent cardiotoxicity of Diclofenac compared to Ketoprofen. Despite both drugs induce the increase in ROS production, decrease of mitochondrial membrane potential, and proteasome activity modulation, only Diclofenac exposure shows a marked alteration of these intracellular parameters, leading to cell death. Noteworthy, Diclofenac decreases the proteasome 26S DC and this scenario may be dependent on the intracellular overload of oxidized proteins. The data support the hypothesis that immortalized human cardiomyocytes exposed to Ketoprofen are subjected to tolerable stress events, conversely Diclofenac exposition triggers cell death.


Assuntos
Anti-Inflamatórios não Esteroides/farmacologia , Diclofenaco/farmacologia , Cetoprofeno/farmacologia , Mitocôndrias Cardíacas/efeitos dos fármacos , Miócitos Cardíacos/efeitos dos fármacos , Complexo de Endopeptidases do Proteassoma/efeitos dos fármacos , Adaptação Fisiológica/efeitos dos fármacos , Morte Celular/efeitos dos fármacos , Sobrevivência Celular/efeitos dos fármacos , Relação Dose-Resposta a Droga , Imunofluorescência , Humanos , Potencial da Membrana Mitocondrial/efeitos dos fármacos , Mitocôndrias Cardíacas/metabolismo , Miócitos Cardíacos/metabolismo , Complexo de Endopeptidases do Proteassoma/metabolismo , Espécies Reativas de Oxigênio/metabolismo
4.
Cell Biol Int ; 44(8): 1734-1744, 2020 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-32343461

RESUMO

Alzheimer's disease represents the most prevalent neurodegeneration worldwide, clinically characterized by cognitive and memory impairment. New therapeutic approaches are extremely important to counteract this disorder. This research is focused on the potential use of choline alfoscerate in preventing neuronal death using in vitro models of Alzheimer's disease, representing the early stage of the disease, treated before or after the insult with glycerylphosphorylcholine. On the light of the results collected, we can postulate that choline alfoscerate, by the activation of the neurotrophin survival pathway, was able to counteract the detrimental effect of ß-amyloid in both in vitro models, reducing apoptotic cell death and preserving the neuronal morphology.


Assuntos
Doença de Alzheimer/metabolismo , Glicerilfosforilcolina/farmacologia , Fármacos Neuroprotetores/farmacologia , Peptídeos beta-Amiloides/toxicidade , Apoptose/efeitos dos fármacos , Fator Neurotrófico Derivado do Encéfalo/metabolismo , Diferenciação Celular , Linhagem Celular Tumoral , Sobrevivência Celular/efeitos dos fármacos , Humanos , Neurônios/citologia , Neurônios/efeitos dos fármacos , Fragmentos de Peptídeos/toxicidade , Receptor trkB/metabolismo , Transdução de Sinais
5.
Aging (Albany NY) ; 12(5): 4641-4659, 2020 03 09.
Artigo em Inglês | MEDLINE | ID: mdl-32155131

RESUMO

Parkinson is a common neurodegenerative disorder, characterized by motor and non-motor symptoms, including abnormalities in the gut function, which may appear before the motor sign. To date, there are treatments that can help relieve Parkinson' disease (PD)-associated symptoms, but there is no cure to control the onset and progression of this disorder. Altered components of the gut could represent a key role in gut-brain axis, which is a bidirectional system between the central nervous system and the enteric nervous system. Diet can alter the microbiota composition, affecting gut-brain axis function. Gut microbiome restoration through selected probiotics' administration has been reported. In this study, we investigated the effects of the novel formulation SLAB51 in PD. Our findings indicate that this probiotic formulation can counteract the detrimental effect of 6-OHDA in vitro and in vivo models of PD. The results suggest that SLAB51 can be a promising candidate for the prevention or as coadjuvant treatment of PD.


Assuntos
Microbioma Gastrointestinal/efeitos dos fármacos , Destreza Motora/efeitos dos fármacos , Doença de Parkinson Secundária/tratamento farmacológico , Probióticos/uso terapêutico , Animais , Comportamento Animal/efeitos dos fármacos , Linhagem Celular Tumoral , Modelos Animais de Doenças , Humanos , Masculino , Camundongos , Probióticos/administração & dosagem
6.
Aging (Albany NY) ; 12(2): 1928-1951, 2020 01 27.
Artigo em Inglês | MEDLINE | ID: mdl-31986121

RESUMO

Glioblastoma (GB) is the most representative form of primary malignant brain tumour. Several studies indicated a pleiotropic role of CXCL8 in cancer due to its ability to modulate the tumour microenvironment, growth and aggressiveness of tumour cell. Previous studies indicated that CXCL8 by its receptors (CXCR1 and CXCR2) induced activation of the PI3K/p-Akt pathway, a crucial event in the regulation of cytoskeleton rearrangement and cell mobilization. Human GB primary cell culture and U-87MG cell line were used to study the effects of CXCR1 and CXCR2 blockage, by a dual allosteric antagonist, on cell migration and cytoskeletal dynamics. The data obtained point towards a specific effect of autocrine CXCL8 signalling on GB cell invasiveness by the activation of pathways involved in cell migration and cytoskeletal dynamics, such as PI3K/p-Akt/p-FAK, p-cortactin, RhoA, Cdc42, Acetylated α-tubulin and MMP2. All the data obtained support the concept that autocrine CXCL8 signalling plays a key role in the activation of an aggressive phenotype in primary glioblastoma cells and U-87MG cell line. These results provide new insights about the potential of a pharmacological approach targeting CXCR1/CXCR2 pathways to decrease migration and invasion of GB cells in the brain parenchyma, one of the principal mechanisms of recurrence.


Assuntos
Actinas/metabolismo , Movimento Celular , Citoesqueleto/metabolismo , Interleucina-8/metabolismo , Linhagem Celular Tumoral , Humanos , Imunofenotipagem , Microtúbulos/metabolismo , Fenilacetatos/farmacologia , Fosforilação , Ligação Proteica , Transporte Proteico , Receptores de Interleucina-8A/metabolismo , Receptores de Interleucina-8B/metabolismo , Transdução de Sinais , Tiazóis/farmacologia
7.
Artigo em Inglês | MEDLINE | ID: mdl-31799246

RESUMO

Brain tumors mainly originate from glial cells and are classified as gliomas. Malignant gliomas represent an incurable disease; indeed, after surgery and chemotherapy, recurrence appears within a few months, and mortality has remained high in the last decades. This is mainly due to the heterogeneity of malignant gliomas, indicating that a single therapy is not effective for all patients. In this regard, the advent of theranostic nanomedicine, a combination of imaging and therapeutic agents, represents a strategic tool for the management of malignant brain tumors, allowing for the detection of therapies that are specific to the single patient and avoiding overdosing the non-responders. Here, recent theranostic nanomedicine approaches for glioma therapy are described.

8.
Int J Mol Sci ; 20(21)2019 Oct 31.
Artigo em Inglês | MEDLINE | ID: mdl-31683535

RESUMO

Peroxisome proliferator-activated receptors (PPARs) are nuclear receptors that exert important functions in mediating the pleiotropic effects of diverse exogenous factors such as physical exercise and food components. Particularly, PPARs act as transcription factors that control the expression of genes implicated in lipid and glucose metabolism, and cellular proliferation and differentiation. In this review, we aim to summarize the recent advancements reported on the effects of lifestyle and food habits on PPAR transcriptional activity in chronic disease.


Assuntos
Comportamento Alimentar , Inflamação/metabolismo , Estilo de Vida , Síndrome Metabólica/metabolismo , Receptores Ativados por Proliferador de Peroxissomo/metabolismo , Animais , Doença Crônica , Metabolismo Energético , Humanos , Isoformas de Proteínas/metabolismo
9.
Int J Mol Sci ; 20(20)2019 Oct 12.
Artigo em Inglês | MEDLINE | ID: mdl-31614739

RESUMO

Recent findings have led to the discovery of many signaling pathways that link nuclear receptors with human conditions, including mental decline and neurodegenerative diseases. PPARγ agonists have been indicated as neuroprotective agents, supporting synaptic plasticity and neurite outgrowth. For these reasons, many PPARγ ligands have been proposed for the improvement of cognitive performance in different pathological conditions. In this review, the research on this issue is extensively discussed.


Assuntos
Transtorno Autístico/metabolismo , Transtornos Cognitivos/metabolismo , Cognição , PPAR gama/metabolismo , Doença de Parkinson/metabolismo , Esquizofrenia/metabolismo , Animais , Transtorno Autístico/genética , Transtornos Cognitivos/genética , Humanos , PPAR gama/genética , Doença de Parkinson/genética , Esquizofrenia/genética
10.
Cells ; 8(9)2019 09 05.
Artigo em Inglês | MEDLINE | ID: mdl-31491966

RESUMO

The mechanotransduction is the process by which cells sense mechanical stimuli such as elasticity, viscosity, and nanotopography of extracellular matrix and translate them into biochemical signals. The mechanotransduction regulates several aspects of the cell behavior, including migration, proliferation, and differentiation in a time-dependent manner. Several reports have indicated that cell behavior and fate are not transmitted by a single signal, but rather by an intricate network of many signals operating on different length and timescales that determine cell fate. Since cell biology and biomaterial technology are fundamentals in cell-based regenerative therapies, comprehending the interaction between cells and biomaterials may allow the design of new biomaterials for clinical therapeutic applications in tissue regeneration. In this work, we present the most relevant mechanism by which the biomechanical properties of extracellular matrix (ECM) influence cell reprogramming, with particular attention on the new technologies and materials engineering, in which are taken into account not only the biochemical and biophysical signals patterns but also the factor time.


Assuntos
Reprogramação Celular , Regeneração , Células-Tronco/citologia , Alicerces Teciduais/química , Animais , Materiais Biocompatíveis/química , Materiais Biocompatíveis/farmacologia , Humanos , Mecanotransdução Celular , Células-Tronco/efeitos dos fármacos , Células-Tronco/fisiologia
11.
Front Mol Neurosci ; 12: 132, 2019.
Artigo em Inglês | MEDLINE | ID: mdl-31191244

RESUMO

Brain cells normally respond adaptively to oxidative stress or bioenergetic challenges, resulting from ongoing activity in neuronal circuits. During aging and in neurodegenerative disorders, these mechanisms are compromised. In fact, neurons show unique age-related changes in functions and metabolism, resulting in greater susceptibility to insults and disease. Aging affects the nervous system as well as other organs. More precisely, as the nervous system ages, neuron metabolism may change, inducing glucose hypometabolism, impaired transport of critical substrates underlying metabolism, alterations in calcium signaling, and mitochondrial dysfunction. Moreover, in neuronal aging, an accumulation of impaired and aggregated proteins in the cytoplasm and in mitochondria is observed, as the result of oxidative stress: reduced antioxidant defenses and/or increase of reactive oxygen species (ROS). These changes lead to greater vulnerability of neurons in various regions of the brain and increased susceptibility to several diseases. Specifically, the first part of the review article will focus on the major neuronal cells' rearrangements during aging in response to changes in metabolism and oxidative stress, while the second part will cover the neurodegenerative disease areas in detail.

12.
Int J Mol Sci ; 20(12)2019 Jun 14.
Artigo em Inglês | MEDLINE | ID: mdl-31197114

RESUMO

Chemotherapy-induced peripheral neuropathy (CIPN) is a side effect of chemotherapics such as taxanes, vinca alkaloids, and platinum compounds. In recent years, several reports have indicated the involvement of different molecular mechanisms in CIPN. The pathways described so far are diverse and target various components of the peripheral Nervous System (PNS). Among the contributors to neuropathic pain, inflammation has been indicated as a powerful driver of CIPN. Several pieces of evidence have demonstrated a chemotherapy-induced increase in peripheral pro-inflammatory cytokines and a strong correlation with peripheral neuropathy. At present, there are not adequate strategies to prevent CIPN, although there are drugs for treating CIPN, such as duloxetine, that have displayed a moderate effect on CIPN. In this review, we focus on the players involved in CIPN with a particular emphasis on chemokine signaling.


Assuntos
Quimiocinas/metabolismo , Neuralgia/metabolismo , Transdução de Sinais , Animais , Antineoplásicos/toxicidade , Humanos , Neuralgia/induzido quimicamente , Neuroglia/metabolismo , Neurônios/metabolismo
14.
Int J Mol Sci ; 19(7)2018 Jun 29.
Artigo em Inglês | MEDLINE | ID: mdl-29966227

RESUMO

Energy homeostasis is crucial for cell fate, since all cellular activities are strongly dependent on the balance between catabolic and anabolic pathways. In particular, the modulation of metabolic and energetic pathways in cancer cells has been discussed in some reports, but subsequently has been neglected for a long time. Meanwhile, over the past 20 years, a recovery of the study regarding cancer metabolism has led to an increasing consideration of metabolic alterations in tumors. Cancer cells must adapt their metabolism to meet their energetic and biosynthetic demands, which are associated with the rapid growth of the primary tumor and colonization of distinct metastatic sites. Cancer cells are largely dependent on aerobic glycolysis for their energy production, but are also associated with increased fatty acid synthesis and increased rates of glutamine consumption. In fact, emerging evidence has shown that therapeutic resistance to cancer treatment may arise from the deregulation of glucose metabolism, fatty acid synthesis, and glutamine consumption. Cancer cells exhibit a series of metabolic alterations induced by mutations that lead to a gain-of-function of oncogenes, and a loss-of-function of tumor suppressor genes, including increased glucose consumption, reduced mitochondrial respiration, an increase of reactive oxygen species, and cell death resistance; all of these are responsible for cancer progression. Cholesterol metabolism is also altered in cancer cells and supports uncontrolled cell growth. In this context, we discuss the roles of peroxisome proliferator-activated receptors (PPARs), which are master regulators of cellular energetic metabolism in the deregulation of the energetic homeostasis, which is observed in cancer. We highlight the different roles of PPAR isotypes and the differential control of their transcription in various cancer cells.


Assuntos
Neoplasias/metabolismo , Receptores Ativados por Proliferador de Peroxissomo/metabolismo , Animais , Metabolismo Energético/genética , Metabolismo Energético/fisiologia , Humanos , Neoplasias/genética , Receptores Ativados por Proliferador de Peroxissomo/genética , Receptores Citoplasmáticos e Nucleares/genética , Receptores Citoplasmáticos e Nucleares/metabolismo
15.
Oncotarget ; 9(46): 27998-28008, 2018 Jun 15.
Artigo em Inglês | MEDLINE | ID: mdl-29963257

RESUMO

PROBLEM STATEMENT: Chemotherapy-induced peripheral neuropathy (CIPN) is a widespread and potentially disabling side effect of various anticancer drugs. In spite of the intensive research focused on obtaining therapies capable to treat or prevent CIPN, the medical demand remains very high. Microtubule-stabilizing agents, among which taxanes, are effective chemotherapeutic agents for the therapy of several oncologic diseases. The inflammatory process activated by chemotherapeutic agents has been interpreted as a potential trigger of the nociceptive process in CIPN. The chemotherapy-driven release of proinflammatory and chemokines has been recognized as one of the principal mechanisms controlling the establishment of CIPN. Several reports have indicated that probiotics are capable to regulate the balance of anti-inflammatory and pro-inflammatory cytokines. Accordingly, it has been suggested that some probiotic formulations, may have an effective role in the management of inflammatory pain symptoms. Experimental approaches used: we tested the hypothesis that paclitaxel-induced neuropathic pain can be counteracted by the probiotic DSF by using an in vitro model of sensitive neuron, the F11 cells. On this model, the biomolecular pathways involved in chemotherapy induced peripheral neuropathy depending on inflammatory cytokines were investigated by Real-time PCR, Western blotting and confocal microscopy. General conclusions: the results obtained, i.e. the increase of acetylated tubulin, the increase of the active forms of proteins involved in the establishment of neuropathic pain, point towards the use of this probiotic formulation as a possible adjuvant agent for counteracting CINP symptoms.

16.
Int J Mol Sci ; 19(7)2018 Jun 26.
Artigo em Inglês | MEDLINE | ID: mdl-29949869

RESUMO

Peroxisome proliferator activated receptors (PPARs) are a class of ligand-activated transcription factors, belonging to the superfamily of receptors for steroid and thyroid hormones, retinoids, and vitamin D. PPARs control the expression of several genes connected with carbohydrate and lipid metabolism, and it has been demonstrated that PPARs play important roles in determining neural stem cell (NSC) fate. Lipogenesis and aerobic glycolysis support the rapid proliferation during neurogenesis, and specific roles for PPARs in the control of different phases of neurogenesis have been demonstrated. Understanding the changes in metabolism during neuronal differentiation is important in the context of stem cell research, neurodegenerative diseases, and regenerative medicine. In this review, we will discuss pivotal evidence that supports the role of PPARs in energy metabolism alterations during neuronal maturation and neurodegenerative disorders.


Assuntos
Adaptação Fisiológica , Diferenciação Celular , Metabolismo Energético , Neurogênese , Neurônios/citologia , Receptores Ativados por Proliferador de Peroxissomo/metabolismo , Animais , Humanos , Doenças Neurodegenerativas/patologia , Neurônios/metabolismo
17.
J Cell Physiol ; 233(5): 4091-4105, 2018 05.
Artigo em Inglês | MEDLINE | ID: mdl-28941284

RESUMO

Targeted anticancer therapies demand discovery of new cellular targets to be exploited for the delivery of toxic molecules and drugs. In this perspective, in the last few years, nucleolin has been identified as an interesting surface marker to be used for the therapy of glioblastoma. In this study, we investigated whether a synthetic antagonist of cell-surface nucleolin known as N6L, previously reported to decrease both tumor growth and tumor angiogenesis in several cancer cell lines, including glioblastoma cells, as well as endothelial cells proliferation, could be exploited to deliver a protein toxin (saporin) to glioblastoma cells. The pseudopeptide N6L cross-linked to saporin-S6 induced internalization of the toxin inside glioblastoma cancer cells. Our results in vitro demonstrated the effectiveness of this conjugate in inducing cell death, with an ID50 four orders of magnitude lower than that observed for free N6L. Furthermore, the preliminary in vivo study demonstrated efficiency in reducing the tumor mass in an orthotopic mouse model of glioblastoma.


Assuntos
Glioblastoma/tratamento farmacológico , Neovascularização Patológica/tratamento farmacológico , Peptídeos/farmacologia , Fosfoproteínas/farmacologia , Proteínas de Ligação a RNA/farmacologia , Animais , Linhagem Celular Tumoral , Membrana Celular/efeitos dos fármacos , Proliferação de Células/efeitos dos fármacos , Glioblastoma/genética , Glioblastoma/patologia , Humanos , Camundongos , Terapia de Alvo Molecular , Neovascularização Patológica/patologia , Peptídeos/química , Fosfoproteínas/química , Proteínas de Ligação a RNA/química , Saporinas/química , Saporinas/farmacologia , Ensaios Antitumorais Modelo de Xenoenxerto , Nucleolina
18.
J Cell Physiol ; 233(3): 2304-2312, 2018 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-28710861

RESUMO

Ketoprofen L-lysine salt (KLS), is widely used due to its analgesic efficacy and tolerability, and L-lysine was reported to increase the solubility and the gastric tolerance of ketoprofen. In a recent report, L-lysine salification has been shown to exert a gastroprotective effect due to its specific ability to counteract the NSAIDs-induced oxidative stress and up-regulate gastroprotective proteins. In order to derive further insights into the safety and efficacy profile of KLS, in this study we additionally compared the effect of lysine and arginine, another amino acid counterion commonly used for NSAIDs salification, in control and in ethanol challenged human gastric mucosa model. KLS is widely used for the control of post-surgical pain and for the management of pain and fever in inflammatory conditions in children and adults. It is generally well tolerated in pediatric patients, and data from three studies in >900 children indicate that oral administration is well tolerated when administered for up to 3 weeks after surgery. Since only few studies have so far investigated the effect of ketoprofen on gastric mucosa maintenance and adaptive mechanisms, in the second part of the study we applied the cMap approach to compare ketoprofen-induced and ibuprofen-induced gene expression profiles in order to explore compound-specific targeted biological pathways. Among the several genes exclusively modulated by ketoprofen, our attention was particularly focused on genes involved in the maintenance of gastric mucosa barrier integrity (cell junctions, morphology, and viability). The hypothesis was further validated by Real-time PCR.


Assuntos
Anti-Inflamatórios não Esteroides/farmacologia , Arginina/farmacologia , Células Epiteliais/efeitos dos fármacos , Etanol/toxicidade , Mucosa Gástrica/efeitos dos fármacos , Ibuprofeno/farmacologia , Cetoprofeno/análogos & derivados , Lisina/análogos & derivados , Anti-Inflamatórios não Esteroides/toxicidade , Arginina/toxicidade , Sobrevivência Celular/efeitos dos fármacos , Citoproteção , Combinação de Medicamentos , Células Epiteliais/metabolismo , Células Epiteliais/patologia , Mucosa Gástrica/metabolismo , Mucosa Gástrica/patologia , Perfilação da Expressão Gênica/métodos , Redes Reguladoras de Genes/efeitos dos fármacos , Humanos , Ibuprofeno/toxicidade , Cetoprofeno/farmacologia , Cetoprofeno/toxicidade , Lisina/farmacologia , Lisina/toxicidade , Células MCF-7 , Análise de Sequência com Séries de Oligonucleotídeos , Reação em Cadeia da Polimerase em Tempo Real , Fatores de Tempo , Transcriptoma/efeitos dos fármacos
19.
Curr Pharm Des ; 24(2): 227-238, 2018.
Artigo em Inglês | MEDLINE | ID: mdl-29237377

RESUMO

BACKGROUND: The aging of western societies is leading to a dramatic increase in the prevalence of chronic conditions, threatening the health status and then the sustainability of our healthcare systems. In particular, dementia is being increasingly recognized as a public health priority, given its enormous socioeconomic burdens further amplified by the absence of treatments really effective in improving the clinical course of the disease. METHODS: The question of whether some degree of cognitive deterioration is an inevitable part of aging or should be considered as a pathological pre-stage of dementia is currently debated. This is a field in need of research because accelerated brain aging as well as further decline in cognition might be preventable in the early stages of cognitive impairment. Herein, we discuss evidence from clinical and experimental studies on the role of polyphenols in preserving cognitive performance across life. RESULTS: In recent years, the possibility of favorably influencing the cognitive trajectory through promotion of lifestyle modifications has been increasingly investigated. In particular, the relationship between nutritional habits and brain health has attracted special attention. Dietary polyphenols exhibit a strong potential to promote brain due to their efficacy in protecting neurons against oxidative stress-induced injury, suppressing neuroinflammation and in ameliorating cardiovascular risk factor control and cardiovascular function thus counteracting neurotoxicity and neurodegeneration. CONCLUSION: Emerging evidence suggest that dietary polyphenols, in particular flavonoids, may exert beneficial effects on the central nervous system thus representing a potential tool to preserve cognitive performance throught senescence.


Assuntos
Encéfalo/efeitos dos fármacos , Dieta , Polifenóis/farmacologia , Animais , Humanos , Polifenóis/administração & dosagem
20.
J Cell Physiol ; 233(6): 4383-4390, 2018 06.
Artigo em Inglês | MEDLINE | ID: mdl-29030981

RESUMO

Given the central role of gluten in the pathogenesis of celiac disease (CD), a strict gluten-free diet (GFD) is the only validated treatment able to restore epithelium integrity and eliminate risks of complications. The risk of gluten contamination and the persistence of inflammation, even in patients strictly adhering to GFD, may render this treatment not always effective claiming the necessity of different new solutions. Oxidative and nitrosative stress have been indicated to play a pathophysiological role in CD. Mesalazine (5-ASA), a drug largely used in inflammatory bowel disease, has potent antinflammatory and antioxidant effects. In fact, mesalazine has been shown to decrease in vitro gluten induced cytokine response and it has been used in vivo in some refractory condition. However, its effect has never compared to that of GFD. The present study aimed to address this issue by comparing the ability of mesalazine and GFD in treating gluten-induced inflammation and oxidative stress. These effects were studied on duodenal mucosa biopsy cultures from newly diagnosed CD patients, treated or not in vitro with mesalazine, and CD biopsy cultures from patients on gluten-free diet for at least one year; and a cohort of controls constituted by healty subjects. On these models, the antioxidant cellular defences, the PPARγ, NF-kB and NOS2 proteins levels were studied. This study shows that mesalazine is as effective as GFD in reducing oxidative burst and inducing PPARγ expression; moreover it resulted more effective than GFD in decreasing NF-kB and NOS2 to the levels of controls.


Assuntos
Anti-Inflamatórios não Esteroides/farmacologia , Antioxidantes/farmacologia , Doença Celíaca/dietoterapia , Dieta Livre de Glúten , Duodeno/efeitos dos fármacos , Mucosa Intestinal/efeitos dos fármacos , Mesalamina/farmacologia , Aldeídos/metabolismo , Estudos de Casos e Controles , Catalase/metabolismo , Doença Celíaca/imunologia , Doença Celíaca/patologia , Duodeno/metabolismo , Duodeno/patologia , Humanos , Mediadores da Inflamação/metabolismo , Mucosa Intestinal/metabolismo , Mucosa Intestinal/patologia , NF-kappa B/metabolismo , Óxido Nítrico Sintase Tipo II/metabolismo , Estresse Oxidativo/efeitos dos fármacos , PPAR gama/metabolismo , Superóxido Dismutase/metabolismo , Técnicas de Cultura de Tecidos
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...