Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 6 de 6
Filtrar
Mais filtros











Base de dados
Intervalo de ano de publicação
1.
Light Sci Appl ; 12(1): 250, 2023 Oct 12.
Artigo em Inglês | MEDLINE | ID: mdl-37828041

RESUMO

The realization of lossless metasurfaces with true chirality crucially requires the fabrication of three-dimensional structures, constraining experimental feasibility and hampering practical implementations. Even though the three-dimensional assembly of metallic nanostructures has been demonstrated previously, the resulting plasmonic resonances suffer from high intrinsic and radiative losses. The concept of photonic bound states in the continuum (BICs) is instrumental for tailoring radiative losses in diverse geometries, especially when implemented using lossless dielectrics, but applications have so far been limited to planar structures. Here, we introduce a novel nanofabrication approach to unlock the height of individual resonators within all-dielectric metasurfaces as an accessible parameter for the efficient control of resonance features and nanophotonic functionalities. In particular, we realize out-of-plane symmetry breaking in quasi-BIC metasurfaces and leverage this design degree of freedom to demonstrate an optical all-dielectric quasi-BIC metasurface with maximum intrinsic chirality that responds selectively to light of a particular circular polarization depending on the structural handedness. Our experimental results not only open a new paradigm for all-dielectric BICs and chiral nanophotonics, but also promise advances in the realization of efficient generation of optical angular momentum, holographic metasurfaces, and parity-time symmetry-broken optical systems.

2.
Sci Adv ; 9(26): eadh0414, 2023 Jun 28.
Artigo em Inglês | MEDLINE | ID: mdl-37379382

RESUMO

Chiral light sources realized in ultracompact device platforms are highly desirable for various applications. Among active media used for thin-film emission devices, lead-halide perovskites have been extensively studied for photoluminescence due to their exceptional properties. However, up to date, there have been no demonstrations of chiral electroluminescence with a substantial degree of circular polarization (DCP) based on perovskite materials, being critical for the development of practical devices. Here, we propose a concept of chiral light sources based on a thin-film perovskite metacavity and experimentally demonstrate chiral electroluminescence with a peak DCP approaching 0.38. We design a metacavity created by a metal and a dielectric metasurface supporting photonic eigenstates with a close-to-maximum chiral response. Chiral cavity modes facilitate asymmetric electroluminescence of pairs of left and right circularly polarized waves propagating in the opposite oblique directions. The proposed ultracompact light sources are especially advantageous for many applications requiring chiral light beams of both helicities.

3.
Polymers (Basel) ; 13(19)2021 Oct 02.
Artigo em Inglês | MEDLINE | ID: mdl-34641206

RESUMO

A molecular model of the orientationally ordered lamellar phase exhibited by asymmetric rod-coil-rod triblock copolymers has been developed using the density-functional approach and generalizing the molecular-statistical theory of rod-coil diblock copolymers. An approximate expression for the free energy of the lamellar phase has been obtained in terms of the direct correlation functions of the system, the Flory-Huggins parameter and the Maier-Saupe orientational interaction potential between rods. A detailed derivation of several rod-rod and rod-coil density-density correlation functions required to evaluate the free energy is presented. The orientational and translational order parameters of rod and coil segments depending on the temperature and triblock asymmetry have been calculated numerically by direct minimization of the free energy. Different structure and ordering of the lamellar phase at high and low values of the triblock asymmetry is revealed and analyzed in detail. Asymmetric rod-coil-rod triblock copolymers have been simulated using the method of dissipative particle dynamics in the broad range of the Flory-Huggins parameter and for several values of the triblock asymmetry. It has been found that the lamellar phase appears to be the most stable one at strong segregation. The density distribution of the coil segments and the segments of the two different rods have been determined for different values of the segregation strength. The simulations confirm the existence of a weakly ordered lamellar phase predicted by the density-functional theory, in which the short rods separate from the long ones and are characterized by weak positional ordering.

4.
Phys Rev Lett ; 125(9): 093903, 2020 Aug 28.
Artigo em Inglês | MEDLINE | ID: mdl-32915592

RESUMO

We demonstrate that rotationally symmetric chiral metasurfaces can support sharp resonances with the maximum optical chirality determined by precise shaping of bound states in the continuum (BICs). Being uncoupled from one circular polarization of light and resonantly coupled to its counterpart, a metasurface hosting the chiral BIC resonance exhibits a narrow peak in the circular dichroism spectrum with the quality factor limited by weak dissipation losses. We propose a realization of such chiral BIC metasurfaces based on pairs of dielectric bars and validate the concept of maximum chirality by numerical simulations.

5.
Polymers (Basel) ; 12(6)2020 May 31.
Artigo em Inglês | MEDLINE | ID: mdl-32486492

RESUMO

Density functional theory of rod-coil diblock copolymers, developed recently by the authors, has been generalised and used to study the liquid crystal ordering and microphase separation effects in the hexagonal, lamellar and nematic phases. The translational order parameters of rod and coil monomers and the orientational order parameters of rod-like fragments of the copolymer chains have been determined numerically by direct minimization of the free energy. The phase diagram has been derived containing the isotropic, the lamellar and the hexagonal phases which is consistent with typical experimental data. The order parameter profiles as functions of temperature and the copolymer composition have also been determined in different anisotropic phases. Finally, the spatial distributions of the density of rigid rod fragments and of the corresponding orientational order parameter in the hexagonal phase have been calculated.

6.
Beilstein J Nanotechnol ; 9: 407-414, 2018.
Artigo em Inglês | MEDLINE | ID: mdl-29515954

RESUMO

Graphite oxide has a complex structure that can be modified in many ways to obtain materials for a wide range of applications. It is known that the graphite precursor has an important role in the synthesis of graphite oxide. In the present study, the basal-plane surface of highly annealed pyrolythic graphite (HAPG) was oxidized by Hummers' method and investigated by Raman spectroscopy and atomic force microscopy. HAPG was used as a graphite precursor because its surface after cleavage contains well-ordered millimeter-sized regions. The treatment resulted in graphite intercalation by sulfuric acid and blister formation all over the surface. Surprisingly, the destruction of the sp2-lattice was not detected in the ordered regions. We suggest that the reagent diffusion under the basal plane surface occurred through the cleavage steps and dislocations with the Burgers vector parallel to the c-axis in graphite.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA