Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 5 de 5
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
MicroPubl Biol ; 20242024.
Artigo em Inglês | MEDLINE | ID: mdl-38690064

RESUMO

The dynamics of microtubule-mediated protrusions, termed Interplanar Amida Network (IPAN) in Drosophila pupal wing, involve cell shape changes. The molecular mechanisms underlying these processes are yet to be fully understood. This study delineates the stages of cell shape alterations during the disassembly of microtubule protrusions and underscores the pivotal role of α-Spectrin in driving these changes by regulating both the microtubule and actomyosin networks. Our findings also demonstrate that α-Spectrin is required for the apical relaxation of wing epithelia during protrusion disassembly, indicating its substantial contribution to the robustness of 3D tissue morphogenesis.

2.
EMBO J ; 43(4): 568-594, 2024 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-38263333

RESUMO

Comprehensive analysis of cellular dynamics during the process of morphogenesis is fundamental to understanding the principles of animal development. Despite recent advancements in light microscopy, how successive cell shape changes lead to complex three-dimensional tissue morphogenesis is still largely unresolved. Using in vivo live imaging of Drosophila wing development, we have studied unique cellular structures comprising a microtubule-based membrane protrusion network. This network, which we name here the Interplanar Amida Network (IPAN), links the two wing epithelium leaflets. Initially, the IPAN sustains cell-cell contacts between the two layers of the wing epithelium through basal protrusions. Subsequent disassembly of the IPAN involves loss of these contacts, with concomitant degeneration of aligned microtubules. These processes are both autonomously and non-autonomously required for mitosis, leading to coordinated tissue proliferation between two wing epithelia. Our findings further reveal that a microtubule organization switch from non-centrosomal to centrosomal microtubule-organizing centers (MTOCs) at the G2/M transition leads to disassembly of non-centrosomal microtubule-derived IPAN protrusions. These findings exemplify how cell shape change-mediated loss of inter-tissue contacts results in 3D tissue morphogenesis.


Assuntos
Drosophila , Microtúbulos , Animais , Microtúbulos/metabolismo , Epitélio/metabolismo , Centro Organizador dos Microtúbulos/metabolismo , Morfogênese
3.
STAR Protoc ; 4(4): 102566, 2023 Dec 15.
Artigo em Inglês | MEDLINE | ID: mdl-37768826

RESUMO

Apicobasal polarity determinants are potential tumor suppressors that have been extensively studied. However, the precise mechanisms by which their misregulation disrupts tissue homeostasis are not fully understood. Here, we present a comprehensive protocol for establishing a conditional RNAi knockdown of scribble in Drosophila wing imaginal disc. We describe steps for generating fly lines, conditional knockdown in host stocks, and sample preparation. We then detail procedures for imaging, image analysis, and verification of wing disc phenotypes by various antibodies. For complete details on the use and execution of this protocol, please refer to Huang et al.1.


Assuntos
Proteínas de Drosophila , Drosophila melanogaster , Animais , Drosophila melanogaster/genética , Discos Imaginais , Proteínas de Drosophila/genética , Drosophila , Comunicação
4.
Fly (Austin) ; 16(1): 118-127, 2022 12.
Artigo em Inglês | MEDLINE | ID: mdl-35302430

RESUMO

The Drosophila wing has been used as a model for studying tissue growth, morphogenesis and pattern formation. The wing veins of Drosophila are composed of two distinct structures, longitudinal veins and crossveins. Although positional information of longitudinal veins is largely defined in the wing imaginal disc during the larval stage, crossvein primordial cells appear to be naive until the early pupal stage. Here, we first review how wing crossveins have been investigated in the past. Then, the developmental mechanisms underlying crossvein formation are summarized. This review focuses on how a conserved trafficking mechanism of BMP ligands is utilized for crossvein formation, and how various co-factors play roles in sustaining BMP signalling. Recent findings further reveal that crossvein development serves as an excellent model to address how BMP signal and dynamic cellular processes are coupled. This comprehensive review illustrates the uniqueness, scientific value and future perspectives of wing crossvein development as a model.


Assuntos
Proteínas de Drosophila , Drosophila melanogaster , Animais , Proteínas Morfogenéticas Ósseas/genética , Proteínas Morfogenéticas Ósseas/metabolismo , Drosophila/genética , Proteínas de Drosophila/metabolismo , Drosophila melanogaster/genética , Regulação da Expressão Gênica no Desenvolvimento , Morfogênese , Asas de Animais/metabolismo
5.
Dev Biol ; 481: 43-51, 2022 01.
Artigo em Inglês | MEDLINE | ID: mdl-34555363

RESUMO

Developmental patterning is thought to be regulated by conserved signalling pathways. Initial patterns are often broad before refining to only those cells that commit to a particular fate. However, the mechanisms by which pattern refinement takes place remain to be addressed. Using the posterior crossvein (PCV) of the Drosophila pupal wing as a model, into which bone morphogenetic protein (BMP) ligand is extracellularly transported to instruct vein patterning, we investigate how pattern refinement is regulated. We found that BMP signalling induces apical enrichment of Myosin II in developing crossvein cells to regulate apical constriction. Live imaging of cellular behaviour indicates that changes in cell shape are dynamic and transient, only being maintained in those cells that retain vein fate competence after refinement. Disrupting cell shape changes throughout the PCV inhibits pattern refinement. In contrast, disrupting cell shape in only a subset of vein cells can result in a loss of BMP signalling. We propose that mechano-chemical feedback leads to competition for the developmental signal which plays a critical role in pattern refinement.


Assuntos
Padronização Corporal , Proteínas Morfogenéticas Ósseas/metabolismo , Proteínas de Drosophila/metabolismo , Regulação da Expressão Gênica no Desenvolvimento , Transdução de Sinais , Animais , Proteínas Morfogenéticas Ósseas/genética , Proteínas de Drosophila/genética , Drosophila melanogaster , Pupa , Asas de Animais
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...