Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 44
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Artigo em Inglês | MEDLINE | ID: mdl-38571325

RESUMO

OBJECTIVE: The Cancer Genome Atlas (TCGA) project identified favorable prognosis regarding the ultra-mutated endometrial cancer (EC) subtype linked to polymerase epsilon gene (POLE) mutations. This study investigated POLE mutations in EC of Indian patients. METHODS: This retrospective analytical study was conducted between January 2016 and January 2023 at the Government Medical College, Kozhikode, and the MVR Cancer Center, Kozhikode, Kerala. Sanger sequencing of POLE gene exons 9 and 13 in 151 EC patients was carried out to analyze the relationship between mutations and epidemiological factors, clinicopathologic features, and treatment outcomes. RESULTS: Among 151 cases enrolled, 39 were unique POLE-mutated cases. Significant associations were high-grade tumors, myometrial invasion >50%, and Lymph-vascular space invasion (LVSI). The median follow-up was 40 months (95% confidence interval [CI], 34-46). A lower mean disease-specific survival (DSS) of 51.7 months (95% CI, 43.7-59.6) was noted in the POLE-mutated group compared with 72.11 months (95% CI, 67.60-76.62) for the POLE wild-type. A statistically significant hazard ratio (HR) of 2.683 for DSS in the POLE-mutated group was noted. In advanced stages (FIGO stages II-IV), a nine-fold HR for DSS and overall survival (OS) compared with POLE wild-type was identified. After controlling for treatment effects using Cox proportional HR, advanced-stage POLE-mutated tumors had a significantly higher HR of 8.67 for DSS compared with POLE-wild-type tumors of the same stage. CONCLUSION: This study identified a unique set of POLE mutations in Indian EC patients associated with poor prognosis, which were particularly pronounced in advanced stages. Advanced stage of presentation, type of POLE mutations, and possibly ethnicity are predictors of adverse outcomes in POLE-mutated EC. The present study highlights ethnicity as a determinant of phenotypic expression of genetic change.

2.
Int J Food Microbiol ; 413: 110600, 2024 Mar 02.
Artigo em Inglês | MEDLINE | ID: mdl-38281435

RESUMO

2-Acetyl-1-pyrroline (2AP) is an important and major flavor aroma compound responsible for the fragrance of basmati rice, cheese, wine, and several other food products. Biosynthesis of 2AP in aromatic rice and a few other plant species is associated with a recessive Betaine aldehyde dehydrogenase 2 (BADH2) gene. However, the literature is scant on the relationship between the functional BADH2 gene and 2AP biosynthesis in prokaryotic systems. Therefore, in the present study, we aimed to explore the functionality of the BADH2 gene for 2AP biosynthesis in 2AP synthesizing rice rhizobacterial isolate Bacillus cereus DB25 isolated from the rhizosphere of basmati rice (Oryza sativa L.). Full-length BcBADH2 sequence was obtained through whole genome sequencing (WGS) and further confirmed through traditional PCR and Sanger sequencing. Then the functionality of the BcBADH2 gene was evaluated in-silico through bioinformatics analysis and protein docking studies and further experimentally validated through enzyme assay. The sequencing and bioinformatics analysis results revealed a full-length 1485 bp BcBADH2 coding sequence without any deletion or premature stop codons. Full-length BcBADH2 was found to encode a fully functional protein of 54.08 kDa with pI of 5.22 and showed the presence of the conserved amino acids responsible for enzyme activity. The docking studies confirmed a good affinity between the protein and its substrate whereas the presence of BcBADH2 enzyme activity confirmed the functionality of BADH2 enzyme in B. cereus DB25. In conclusion, the findings of the present study suggest that B. cereus DB25 is able to synthesize 2AP despite a functional BADH2 gene and there may be a different molecular mechanism responsible for 2AP biosynthesis in bacterial systems, unlike that found in aromatic rice and other eukaryotic plant species.


Assuntos
Bacillus cereus , Oryza , Bacillus cereus/genética , Bacillus cereus/metabolismo , Sequência de Bases , Odorantes/análise , Proteínas de Plantas/metabolismo , Pirróis/metabolismo
3.
Bioresour Technol ; 393: 130084, 2024 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-38000639

RESUMO

Laccase-like multicopper oxidases are recognized for their potential to alter the reactivity of lignins for application in value-added products. Typically, model compounds are employed to discover such enzymes; however, they do not represent the complexity of industrial lignin substrates. In this work, a screening pipeline was developed to test enzymes simultaneously on model compounds and industrial lignins. A total of 12 lignin-active fungal multicopper oxidases were discovered, including 9 enzymes active under alkaline conditions (pH 11.0). Principal component analysis revealed the poor ability of model compounds to predict enzyme performance on industrial lignins. Additionally, sequence similarity analyses grouped these enzymes with Auxiliary Activity-1 sub-families with few previously characterized members, underscoring their taxonomic novelty. Correlation between the lignin-activity of these enzymes and their taxonomic origin, however, was not observed. These are critical insights to bridge the gap between enzyme discovery and application for industrial lignin valorization.


Assuntos
Lacase , Lignina , Humanos , Lacase/metabolismo , Lignina/química , Oxirredução
4.
Gene ; 883: 147674, 2023 Oct 20.
Artigo em Inglês | MEDLINE | ID: mdl-37516285

RESUMO

Nothapodytes nimmoniana belongs to family Icacinaceae and is a major source of compound Camptothecin. The global demand for Camptothecin has caused large-scale exploitation of N. nimmoniana from its wild habitat in Western Ghats of India, thereby making it vulnerable. The species is known to exhibit genetic diversity among the populations in Western Ghats. In this study, we report plastome sequence of N. nimmoniana, first for the genus. For the study, the species was collected from Western Ghats of Maharashtra. The plastome of N. nimmoniana was 150,726 bp in length and exhibited typical quadripartite structure with 83,771 bp LSC, 18,513 bp SSC and 24,221 IR region. The plastome was characterized by presence of 124 unique genes, 87 protein coding genes, 29 tRNA genes and four rRNA genes. Further, the plastome was compared with the available basal lamiid plastomes for gene order and composition. N. nimmoniana plastome exhibited SSC region in an inverted configuration. Phylogenomic study placed N. nimmoniana sister to Mappia mexicana. The SSR markers identified in this study, might help to distinguish genetically diverse populations, prioritizing the populations which need immediate conservation effects as well as for checking adulteration.


Assuntos
Camptotecina , Genoma de Cloroplastos , Índia , Filogenia
5.
Microbiol Res ; 274: 127422, 2023 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-37301080

RESUMO

Prodigiosin pigment is a secondary metabolite produced by many bacterial species and is known for its medicinal properties. A few of these prodigiosin-producing bacteria are also reported to be entomopathogenic. It is intriguing to unravel the role of prodigiosin in insecticidal activities and its mode of action. In this study, we have shown the production and characterization of prodigiosin from the Serratia rubidaea MJ 24 isolated from the soil of the Western Ghats, India. Further, we assessed the effect of this pigment on the lepidopteran agricultural pest, Helicoverpa armigera. Prodigiosin-fed H. armigera indicated defective development of insect growth upon treatment. Due to defective early development, about 50% mortality and 40% reduction in body weight were observed in insects fed on a 500 ppm prodigiosin-containing diet. The transcriptomic analysis of these insects indicated significant dysregulation of Juvenile hormone synthesis and response related genes. In addition, dopamine related processes and their resultant melanization and sclerotization processes were also found to be affected. The changes in the expression levels of the key transcripts were further validated using real-time quantitative PCR. The metabolome data confirmed the developmental dysregulation of precursors and products of differentially regulated genes due to prodigiosin. Therefore, the corroborated data suggests that prodigiosin majorly affects H. armigera development through dysregulation of the Juvenile hormone-dopamine system and can be considered as a bioactive scaffold to design insect-pest management compounds. This study provides the first report of in-depth analysis of insecticidal system dynamics in H. armigera insects upon prodigiosin feeding via gene expression and metabolic change via omics approach.


Assuntos
Inseticidas , Mariposas , Animais , Prodigiosina/farmacologia , Prodigiosina/metabolismo , Dopamina/metabolismo , Dopamina/farmacologia , Serratia/genética , Mariposas/microbiologia , Inseticidas/metabolismo , Larva/microbiologia
6.
Genome ; 66(9): 235-250, 2023 Sep 01.
Artigo em Inglês | MEDLINE | ID: mdl-37163758

RESUMO

Nothapodytes nimmoniana is a medicinally important plant producing anticancer monoterpene indole alkaloid (MIA), camptothecin (CPT). The CPT is synthesised through the strictosidine intermediate following the MIA pathway; however, transcriptional regulation of CPT pathway is still elusive in N. nimmoniana. Biosynthesis of MIA is regulated by various transcription factors (TFs) belonging to AP2/ERF, bHLH, MYB, and WRKY families. The present study identified transcriptionally active full-length 105 AP2/ERF and 68 bHLH family TFs from the N. nimmoniana. AP2/ERF TFs were divided into three subfamilies along with a soloist, while bHLH TFs were divided into 10 subfamilies according to their phylogenetic similarities. Three group IXa ERFs, Nn-ERF22, Nn-ERF29, and Nn-ERF41, one subfamily IVa TF Nn-bHLH7, and three subfamilies IIIe Nn-bHLH33, Nn-bHLH51, and Nn-bHLH52 clustered with the TFs regulating alkaloid biosynthesis in Catharanthus roseus, tomato, tobacco, and Artemisia annua. Expression of these TFs in N. nimmoniana was higher in roots, which is a primary CPT accumulating tissue. Moreover, genome skimming approach was used to reconstruct the promoter regions of candidate ERF genes to identify the cis-regulatory elements. The presence of G-boxes and other jasmonic acid-responsive elements in the promoter suggests the regulation of ERFs by bHLHs. The present study effectively generated and used genomics resource for characterisation of regulatory TFs from non-model medicinal plant.


Assuntos
Alcaloides , Plantas Medicinais , Humanos , Fatores de Transcrição Hélice-Alça-Hélice Básicos/genética , Fatores de Transcrição Hélice-Alça-Hélice Básicos/metabolismo , Filogenia , Fatores de Transcrição/genética , Fatores de Transcrição/metabolismo , Plantas Medicinais/genética , Regiões Promotoras Genéticas , Proteínas de Plantas/genética , Proteínas de Plantas/metabolismo , Regulação da Expressão Gênica de Plantas , Proteínas Repressoras/genética , Proteínas Repressoras/metabolismo
7.
Gene ; 861: 147238, 2023 Apr 20.
Artigo em Inglês | MEDLINE | ID: mdl-36736502

RESUMO

Loranthaceae is the largest family of the order Santalales and includes root and stem hemiparasites. The parasites are known to exhibit reductions in the genomic features as well as relaxed or intensified selection shifts. In this study, we report plastome and mitogenome sequence of Helicanthes elastica (subtribe Amyeminae, tribe Lorantheae), an endemic, monotypic genus of Western Ghats, India growing on remarkably diverse host range. The length of plastome sequence was 1,28,805 bp while that of mitogenome was 1,65,273 bp. This is the smallest mitogenome from Loranthaceae reported till date. The plastome of Helicanthes exhibited loss of ndh genes (ψndhB), ψinfA, rps15, rps16, rpl32, trnK-UUU, trnG-UCC, trnV-UAC and trnA-UGC while mitogenome exhibited pseudogenized cox2, nad1 and nad4 genes. The comparative study of Loranthaceae plastomes revealed that the pseudogenization or loss of genes was not specific to any genus or tribe and variation was noted in the number of introns of clpP gene in the family. Several photosynthetic genes have undergone relaxed selection supporting lower photosynthetic rates in parasitic plants while some respiratory genes exhibited intensified selection supporting the idea of host-parasite arm race in Loranthaceae. The plastome gene content was found conserved in root hemiparasites compared to stem hemiparasites. The atp1 gene of mitogenome was chimeric and part of it exhibited similarities with Lamiales members. The phylogenetic analysis based on plastid genes placed Helicanthes sister to the members of subtribe Dendrophthoinae.


Assuntos
Genoma Mitocondrial , Loranthaceae , Filogenia , Borracha , Evolução Molecular
8.
Curr Microbiol ; 80(4): 108, 2023 Feb 17.
Artigo em Inglês | MEDLINE | ID: mdl-36807001

RESUMO

The Western Ghats is one of India's mega-diversity hotspots and an ecologically and geologically important area for the diversity of endemic plants and animals. The present study provides insights into the aerobic bacterial diversity and composition of the soils of North Western Ghats located in Maharashtra state (NWGM), India. The samples for the culture-dependent study were collected from 6 different locations namely Malshej Ghat, Bhimashankar, Lonavala, Mulshi, Tail-Baila, and Mahabaleshwar. A total of 173 isolates were obtained from the different samples, which belonged to Proteobacteria (43%), Firmicutes (36%), and Actinobacteria (19%). Sequences of 15 strains shared ≤ 98.7% similarity (a species cut-off) which represent potential novel species. Metagenomic analysis revealed the presence of Actinobacteria and Proteobacteria as the most dominant phyla at both MB and MG. However, both sites showed variation in the composition of rare phyla and other dominant phyla. This difference in bacterial community composition could be due to differences in altitude or other physicochemical properties. The functional prediction from the amplicon sequencing showed the abundance of carbohydrate, protein, and lipid metabolism which was corroborated by screening the isolated bacterial strains for the same. The present study has a unique take on microbial diversity and defines the importance of community assembly processes such as drift, dispersal, and selection. Such processes are relatively important in controlling community diversity, distribution, as well as succession. This study has shown that the microbial community of NWGM is a rich source of polysaccharide degrading bacteria having biotechnological potential.


Assuntos
Actinobacteria , Solo , Animais , Solo/química , Microbiologia do Solo , Índia , Bactérias/genética , Biodiversidade , Proteobactérias , Actinobacteria/genética , RNA Ribossômico 16S/metabolismo
9.
J Plant Res ; 136(1): 47-62, 2023 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-36227455

RESUMO

Plumbagin and other naphthoquinone derivatives from the Plumbago zeylanica L. (Plumbaginaceae) are known for their anticancer and other medicinal properties. Previous reports suggest that 3-methyl-1,8-naphthalene-diol is an intermediate of the plumbagin biosynthetic pathway and is synthesized from hexaketide backbone; a reaction catalyzed by type III polyketide synthase (PKS) along with certain accessory enzymes. Our earlier transcriptomic and metabolomic studies suggest that along with PKS, putative cyclase and aldo-keto reductase might be involved in the formation of 3-methyl-1,8-naphthalene-diol. The present study probed young leaf transcriptome and identified cyclase and aldo-keto reductase like transcripts that might be involved in the intramolecular aldol condensation of hexaketide intermediate and decarboxylation, carbonyl reduction and hydroxyl elimination of keto or enol forms of hexaketide intermediates respectively. Moreover, sequence alignment of identified cyclase1 possesses signature ß-α-ß-ß-α-α-ß topology, which belongs to the dimeric α + ß barrel (DABB) protein family and is involved in the C2-C11 and C4-C9 intramolecular aldol condensation of hexaketide intermediates. Along with cyclase1, we further identified and characterized P. zeylanica specific aldo-keto reductase1 (AKR1) which is a novel member of the aldo-keto reductase (AKR) multi-gene family that possesses the conserved Asp60, Tyr65, Lys91, and His132 residues and is proposed to be involved in the C1 decarboxylation, C3 carbonyl reduction and C7 hydroxyl elimination of keto or enol form of hexaketide intermediate to form 3-methyl-1,8-naphthalene-diol. Further, the functional characterization using the artificial microRNA mediated transient silencing approach confirmed the involvement of cyclase1 and AKR1 in the plumbagin biosynthetic pathway. This is the first study reporting the identification and functional characterization of cyclase1 and AKR1 genes involved in the plumbagin biosynthetic pathway and general plant polyketide biosynthesis.


Assuntos
MicroRNAs , Naftoquinonas , Aldo-Ceto Redutases/genética , Aldo-Ceto Redutases/química , Aldo-Ceto Redutases/metabolismo , MicroRNAs/metabolismo , Vias Biossintéticas/genética
10.
Planta ; 256(6): 102, 2022 Oct 25.
Artigo em Inglês | MEDLINE | ID: mdl-36282353

RESUMO

MAIN CONCLUSION: Novel cytochrome P450s, CYP81B140 and CYP81B141 from Plumbago zeylanica were functionally characterized to understand their involvement in polyketide plumbagin biosynthesis. Further, we propose 3-methyl-1-8-naphthalenediol and isoshinanolone as intermediates for plumbagin biosynthesis. Plumbago zeylanica L. (P. zeylanica) is a medicinally important plant belonging to the family Plumbaginaceae. It comprises the most abundant naphthoquinone plumbagin having anti-cancer activity. Only the polyketide synthase (PKS) enzyme has been identified from the biosynthetic pathway which catalyzes iterative condensation of acetyl-CoA and malonyl-CoA molecules. The plumbagin biosynthesis involves hydroxylation, oxidation, hydration and dehydration of intermediate compounds which are expected to be catalyzed by cytochrome P450s (CYPs). To identify the CYPs, co-expression analysis was carried out using PKS as a candidate gene. Out of the eight identified CYPs, CYP81B140 and CYP81B141 have similar expression with PKS and belong to the CYP81 family. Phylogenetic analysis suggested that CYP81B140 and CYP81B141 cluster with CYPs from CYP81B, CYP81D, CYP81E and CYP81AA subfamilies which are known to be involved in the hydroxylation and oxidation reactions. Moreover, artificial microRNA-mediated transient individual silencing and co-silencing of CYP81B140 and CYP81B141 significantly reduced plumbagin and increased the 3-methyl-1-8-naphthalenediol and isoshinanolone content. Based on metabolite analysis, we proposed that 3-methyl-1-8-naphthalenediol and isoshinanolone function as intermediates for plumbagin biosynthesis. Transient silencing, over-expression and docking analysis revealed that CYP81B140 is involved in C-1 oxidation, C-4 hydroxylation and [C2-C3] hydration of 3-methyl-1-8-naphthalenediol to form isoshinanolone, whereas CYP81B141 is catalyzing [C2-C3] dehydration and C-4 oxidation of isoshinanolone to form plumbagin. Our results indicated that both CYP81B140 and CYP81B141 are promiscuous and necessary for plumbagin biosynthesis. This is the first report of identification and functional characterization of P. zeylanica-specific CYPs involved in plumbagin biosynthetic pathway and in general hexaketide synthesis in plants.


Assuntos
MicroRNAs , Naftoquinonas , Plumbaginaceae , Policetídeos , Plumbaginaceae/genética , Plumbaginaceae/metabolismo , Policetídeo Sintases/genética , Filogenia , Acetilcoenzima A , Desidratação , Raízes de Plantas/metabolismo , Naftoquinonas/metabolismo , Genômica , Citocromos
11.
3 Biotech ; 12(10): 250, 2022 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-36051988

RESUMO

Plants produce a range of secondary metabolites primarily as defence molecules. A plant has to invest considerable energy to synthesise alkaloids, and sometimes they are even toxic to themselves. Hence, the biosynthesis of alkaloids is a spatiotemporally regulated process under quantitative feedback regulation which is accomplished by the signal reception, transcriptional/translational regulation, transport, storage and accumulation. The transcription factors (TFs) initiate the biosynthesis of alkaloids after appropriate cues. The present study recapitulates last decade understanding of the role of TFs in alkaloid biosynthesis. The present review discusses TF families, viz. AP2/ERF, bHLH, WRKY, MYB involved in the biosynthesis of various types of alkaloids. It also highlights the role of the jasmonic acid cascade and post-translational modifications of TF proteins. A thorough understanding of TFs will help us to decide a strategy to facilitate successful pathway manipulation and in vitro production.

12.
J Pharm Bioallied Sci ; 14(Suppl 1): S589-S594, 2022 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-36110813

RESUMO

Background: Polycyclic aromatic hydrocarbons (PAHs) constitute a group of chemicals with an omnipresence in the environment and our surroundings. With their genotoxicity and carcinogenic nature, it has been proven to be monstrous in our daily life and, especially for pregnant women and their newborn. Aim: This questionnaire study was done to verify the influence of domestic exposure to polyaromatic hydrocarbons on women's periconceptional stage and risk of oral cleft in offspring in the suburban and the rural population of Mysore. Methodology: Two hundred pregnant women as patients from four different hospitals in Mysore were given a questionnaire to be filled with 24 parameters ranging from the knowledge to various means of exposure to the pregnant women with the PAH and the severity and the extent of the orofacial defect in the newborn. Results: It was determined that exposure of pregnant women to the smoke emanating from the method of cooking or heating to smoking (first or passive) and the direct inhalation of gas had the maximum effects on the association of cleft palate (60.7%) in unilateral followed by 90.9% in bilateral, 65.0% in soft tissue, and 76.2% in hard tissue cleft palate. Conclusion: The deleterious effects of the cooking and water heating measures practiced in the suburban and the rural population predisposed the pregnant women to significantly higher chances of offspring with the varied extent of the orofacial defect. There is an influence of domestic exposure to polycyclic aromatic hydrocarbons on women's periconceptional stage and risk of oral cleft in offspring.

13.
Microbiol Res ; 263: 127157, 2022 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-35944355

RESUMO

Rice is a major food crop cultivated around the globe. Specially scented rice varieties are of commercial importance but they are low-yielding. The rhizospheric microflora plays a significant role in improving yield and aroma. However, the core microbiome of the scented rice rhizosphere is comparatively less explored. Here, we analyzed the core microbiome associated with the rhizosphere of the scented (Ambemohar-157 and Dehradun basmati) in comparison with non-scented rice (Kolam and Arize 6444 Gold) cultivated at two different geoclimatic zones of India (Maharashtra and Uttarakhand) using the metagenomics approach. The alpha and beta diversity analysis showed that the microbial communities associated with scented and non-scented varieties significantly changes with respect to richness, diversity, and evenness. The taxonomic profiling revealed the variation in composition, diversity, and abundance of the microbiome in terms of phyla and genera associated with scented rice varieties over non-scented. The cluster analysis distinguishes the microbial communities based on their geographical positions. The core microbiome analysis revealed that scented rice rhizosphere shelters distinct and unique microbiota. 28.6 % of genera were exclusively present only in the scented rice rhizosphere. The putative functional gene annotation revealed the high abundance of genes related to the biosynthesis of 2-acetyl-1-pyrroline (2AP) precursors in scented rice. The precursor feeding analysis revealed proline as a preferred substrate by 2AP synthesizing bacteria. The 2AP precursor proline and proline metabolism genes showed a positive correlation. The scented rice-specific rhizobacteria pointed out in this study can be used as bio-inoculants for enhancing aroma, yield, and sustainable rice cultivation.


Assuntos
Microbiota , Oryza , Índia , Metagenômica , Microbiota/genética , Oryza/microbiologia , Prolina/metabolismo , Rizosfera , Microbiologia do Solo
14.
Plant Physiol Biochem ; 162: 677-689, 2021 May.
Artigo em Inglês | MEDLINE | ID: mdl-33780741

RESUMO

Over the last decade, silicon (Si) has been widely accepted as a beneficial element for plant growth. The advantages plant derives from the Si are primarily based on the uptake and transport mechanisms. In the present study, the Si uptake regime was studied in finger millet (Eleusine coracana (L). Gaertn.) under controlled and stress conditions. The finger millet can efficiently uptake Si and accumulate it by more than 1% of dry weight in the leaf tissues, thus categorized as a Si accumulator. Subsequent evaluation with the single root assay revealed a three-fold higher Si uptake under osmatic stress than control. These results suggest that Si alleviated the PEG-induced stress by regulating the levels of osmolytes and antioxidant enzymes. Further, to understand the molecular mechanism involved in Si uptake, the Si influx (EcoLsi1 and EcoLsi6) and efflux transporters (EcoLsi2 and EcoLsi3) were identified and characterized. The comparative phylogenomic analysis of the influx transporter EcoLsi1 with other monocots revealed conserved features like aromatic/arginine (Ar/R) selectivity filters and pore morphology. Similarly, Si efflux transporter EcoLsi3 is highly homologous to other annotated efflux transporters. The transcriptome data revealed that the expression of both influx and efflux Si transporters was elevated due to Si supplementation under stress conditions. These findings suggest that stress elevates Si uptake in finger millet, and its transport is also regulated by the Si transporters. The present study will be helpful to better explore Si derived benefits in finger millet.


Assuntos
Eleusine , Pressão Osmótica , Filogenia , Silício , Transcriptoma
15.
J Biotechnol ; 328: 47-58, 2021 Feb 20.
Artigo em Inglês | MEDLINE | ID: mdl-33476738

RESUMO

Basmati and non-basmati rice varieties are commercially important. Aromatic rice varieties are low yielding and recently depletion in aroma is observed due to the shift towards modern agriculture. Therefore, it is necessary to restore the aroma and increase the yield through sustainable agriculture. The use of microbial bioinoculants is one of the promising ways to achieve these targets. With these objectives, rhizospheric bacterial strains Enterobacter hormaechei (AM122) and Lysinibacillus xylanilyticus (DB25) having the property of synthesizing 2-acetyl-1-pyrroline (2AP) were isolated from the rhizosphere of two aromatic rice varieties, Ambemohar-157 and Dehradun Basmati respectively and their effect on plant growth, aroma and yield enhancement under mono-inoculation and consortium conditions was analyzed. The bacterial inoculum in consortium resulted in significant improvement in vegetative growth, yield and 2AP content over mono inoculation and control. The study highlights the potential of E. hormaechei and L. xylanilyticus in plant growth, yield and aroma enhancement in basmati and non-basmati rice varieties. These strains can be taken up further for developing a commercial bioformulation.


Assuntos
Oryza , Bacillaceae , Enterobacter , Odorantes
16.
J Basic Microbiol ; 61(3): 180-202, 2021 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-33460172

RESUMO

The outbreak of a novel coronavirus associated with acute respiratory disease, called COVID-19, marked the introduction of the third spillover of an animal coronavirus (CoV) to humans in the last two decades. The genome analysis with various bioinformatics tools revealed that the causative pathogen (SARS-CoV-2) belongs to the subgenus Sarbecovirus of the genus Betacoronavirus, with highly similar genome as bat coronavirus and receptor-binding domain (RBD) of spike glycoprotein as Malayan pangolin coronavirus. Based on its genetic proximity, SARS-CoV-2 is likely to have originated from bat-derived CoV and transmitted to humans via an unknown intermediate mammalian host, probably Malayan pangolin. Further, spike protein S1/S2 cleavage site of SARS-CoV-2 has acquired polybasic furin cleavage site which is absent in bat and pangolin suggesting natural selection either in an animal host before zoonotic transfer or in humans following zoonotic transfer. In the current review, we recapitulate a preliminary opinion about the disease, origin and life cycle of SARS-CoV-2, roles of virus proteins in pathogenesis, commonalities, and differences between different corona viruses. Moreover, the crystal structures of SARS-CoV-2 proteins with unique characteristics differentiating it from other CoVs are discussed. Our review also provides comprehensive information on the molecular aspects of SARS-CoV-2 including secondary structures in the genome and protein-protein interactions which can be useful to understand the aggressive spread of the SARS-CoV-2. The mutations and the haplotypes reported in the SARS-CoV-2 genome are summarized to understand the virus evolution.


Assuntos
COVID-19/virologia , SARS-CoV-2/genética , SARS-CoV-2/metabolismo , Animais , COVID-19/epidemiologia , Proteínas do Nucleocapsídeo de Coronavírus/química , Proteínas do Nucleocapsídeo de Coronavírus/genética , Proteínas do Nucleocapsídeo de Coronavírus/metabolismo , Genoma Viral , Humanos , Pandemias , Fosfoproteínas/química , Fosfoproteínas/genética , Fosfoproteínas/metabolismo , SARS-CoV-2/classificação , Glicoproteína da Espícula de Coronavírus/química , Glicoproteína da Espícula de Coronavírus/genética , Glicoproteína da Espícula de Coronavírus/metabolismo , Proteínas da Matriz Viral/química , Proteínas da Matriz Viral/genética , Proteínas da Matriz Viral/metabolismo , Zoonoses Virais/virologia , Replicação Viral
17.
Genome ; 64(1): 1-14, 2021 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-32976723

RESUMO

The plant Nothapodytes nimmoniana is an important source of camptothecin (CPT), an anticancer compound widely used in the treatment of colorectal, lung, and ovarian cancers. CPT is biosynthesized by the combination of the seco-iridoid and indole pathways in plants. The majority of the biosynthetic steps and associated genes still remain unknown. Certain reactions in the seco-iridoid pathway are catalyzed by cytochrome P450 enzymes. Hence, identifying transcriptionally active cytochrome P450 genes becomes essential in the elucidation of the CPT biosynthetic pathway. Here, we report the identification of 94 cytochrome P450s from the assembled transcriptomic data from leaf and root tissues of N. nimmoniana. The identified cytochrome P450 genes were full length and possessed all four conserved characteristic signature motifs of cytochrome P450 genes. Phylogenetic analysis of the protein sequences revealed their evolution and diversification and further categorized them into A-type (52.12%) and non-A-type (47.87%) cytochrome P450s. These 94 sequences represent 38 families and 63 subfamilies of cytochrome P450s. We also compared the transcriptional activity of identified cytochrome P450s with the expression of their homologs in the CPT-producing plant Ophiorrhiza pumila. Based on expression profiles and quantitative PCR validation, we propose NnCYP81CB1 and NnCYP89R1 as candidate cytochrome P450 genes involved in camptothecin biosynthesis in N. nimmoniana.


Assuntos
Vias Biossintéticas , Camptotecina/biossíntese , Sistema Enzimático do Citocromo P-450/metabolismo , Magnoliopsida/metabolismo , Filogenia , Transcriptoma , Sequência de Aminoácidos , Sistema Enzimático do Citocromo P-450/genética , Perfilação da Expressão Gênica , Magnoliopsida/genética , Meiose , Folhas de Planta/metabolismo
18.
Fitoterapia ; 147: 104761, 2020 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-33069837

RESUMO

Plumbagin is a pharmacologically active naphthoquinone present in the Plumbago zeylanica L. having important medicinal properties. The root of P. zeylanica is rich and primary tissue of the plumbagin biosynthesis and accumulation. The complete biosynthetic pathway of plumbagin in plant is still obscure. The present study attempts to understand the plumbagin biosynthetic pathway with the help of differential transcriptome and metabolome analysis of P. zeylanica leaf and root. The transcriptome data showed co-expression of Aldo-keto reductase (PzAKR), Polyketide cyclase (Pzcyclase) and Cytochrome P450 (PzCYPs) transcripts along with the Polyketide synthase (PzPKS) transcripts. Their higher expression in root as compared to leaf supports their possible involvement in plumbagin biosynthesis. The metabolome data of leaf and root revealed naphthalene derivative isoshinanolone that could be potential precursor of plumbagin. Pathway elucidation and transcriptome data of P. zeylanica, will enable and accelerate research on naphthoquinone biosynthesis in plants.


Assuntos
Metaboloma , Naftoquinonas/metabolismo , Plumbaginaceae/genética , Transcriptoma , Regulação da Expressão Gênica de Plantas , Genes de Plantas , Índia , Redes e Vias Metabólicas , Folhas de Planta , Raízes de Plantas , Plumbaginaceae/enzimologia
19.
J Biotechnol ; 321: 23-34, 2020 Sep 10.
Artigo em Inglês | MEDLINE | ID: mdl-32610182

RESUMO

MicroRNAs (miRNA) are non-coding 20-24 nucleotide long RNAs regulating gene expression. In this study, we have characterized and analysed expression of miRNAs in Pigeonpea by using bioinformatics and experimental tools. We identified 116 miRNAs belonging to 32 phylogenetic families. Further, transcription start sites of miRNA genes revealed abundance and unique arrangement of adenine at +1 and thymine at -1 position. Promoter analysis exhibited presence of 19 most prevalent motifs which comprises majorly of TATA box and MYC domains. In total, 252 miRNA-targets were identified and found to be involved in various developmental processes and stress responses. Moreover, genome-wide localization studies demonstrated clustering of cca-miRNA 395 and 169 genes. The tandem and segmental duplication events were observed suggesting miRNA genes have been originated parallelly with protein coding genes. The expression analysis revealed induction of cca-miR169a, 398a and 408 miRNAs under drought stress highlighting their involvement. Conversely, down-regulation of their putative targets (NFYA, SOD, and UCLA, respectively) confirmed regulatory role of miRNAs in their expression emphasising the negative relationship between these miRNAs and targets in Pigeonpea. This study reports vast repertoire of miRNA genes which further can be experimentally characterized to elucidate their functions in various biological processes and can be recommended for Pigeonpea improvement programs.


Assuntos
Cajanus/genética , Secas , MicroRNAs/genética , RNA de Plantas/genética , Estresse Fisiológico/genética , Cajanus/fisiologia , Genes de Plantas/genética , MicroRNAs/metabolismo , Família Multigênica/genética , Regiões Promotoras Genéticas/genética , RNA de Plantas/metabolismo
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...