Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Front Pharmacol ; 14: 1145962, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-37456752

RESUMO

Introduction: This study was performed to determine the levels of α1-acid glycoprotein (AGP) in old-age patients undergoing total hip arthroplasty. AGP is considered an acute phase protein produced during the acute phase reaction in the body to various stimuli; their proper monitoring is thus important. Methods: In order to study how AGP concentrations in old age patients change in response to surgical stress (total hip arthroplasty), a high-performance liquid chromatography assay was performed to measure AGP levels. AGP was isolated from the plasma by adding perchloric acid and was analyzed using PLRP-S 4000°A column. The mobile phase consisted of 1 mL TFA/L of water (Solvent A pH 2) and 1 mL TFA/L of acetonitrile (Solvent B). The gradient used was as follows: 0 min 18% B and 82% A, 15 min 60% B and 40% A, and 17 min 60% B and 40% A followed by column re-equilibration for 7 min before the next injection. AGP peak was obtained between 8.8 and 8.9 min. The method was fully optimised according to established guidelines. Results: The data obtained were analyzed on ChromQuest software. AGP concentrations were determined in all samples, including baseline and samples taken at different timed intervals. The peak for AGP was obtained between 8.8 and 8.9 min for both standard AGP and patient plasma. The graphs indicate that AGP concentration in almost all patient samples increased considerably, especially after 4 h and 24 h-for example, initial concentration in patient 1 was 10.36 mg/100 mL but, after 24 h, increased to 23.50 mg/100 mL. There was thus almost a 13 mg/100 mL increase in 24 h, which is confirmed by AGP concentration increasing after various conditions, including surgery. The increased plasma protein binding was comparatively associated with the unchanged free fraction of the drug. Conclusion: This surgically induced increase in AGP concentration resulted in increased plasma protein binding of the drug (ropivacaine), which in turn kept the free portion of ropivacaine stable during the postoperative period.

2.
Front Microbiol ; 7: 1189, 2016.
Artigo em Inglês | MEDLINE | ID: mdl-27555836

RESUMO

There are several reports about the optimization of protease production, but only few have optimized the production of organic solvent tolerant keratinolytic proteases that show remarkable exploitation in the development of the non-polluting processes in biotechnological industries. The present study was carried with aim to optimize the production of a thermostable organic solvent tolerant keratinolytic protease Thermoactinomyces sp. RM4 utilizing chicken feathers. Thermoactinomyces sp. RM4 isolated from the soil sample collected from a rice mill wasteyard site near Kashipur, Uttrakhand was identified on the basis of 16S rDNA analysis. The production of organic solvent tolerant keratinolytic protease enzyme by Thermoactinomyces sp. RM4 was optimized by varying physical culture conditions such as pH (10.0), temperature (60°C), inoculum percentage (2%), feather concentration (2%) and agitation rate (2 g) for feather degradation. The result showed that Thermoactinomyces sp. RM4 potentially produces extra-cellular thermostable organic solvent tolerant keratinolytic protease in the culture medium. Further, the feather hydrolysate from keratinase production media showed plant growth promoting activity by producing indole-3-acetic acid itself. The present findings suggest that keratinolytic protease from Thermoactinomyces sp. RM4 offers enormous industrial applications due to its organic solvent tolerant property in peptide synthesis, practical role in feather degradation and potential function in plant growth promoting activity, which might be a superior candidate to keep ecosystem healthy and functional.

3.
Protoplasma ; 253(4): 1023-32, 2016 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-26231814

RESUMO

Thermoplastic-based materials are recalcitrant in nature, which extensive use affect environmental health. Here, we attempt to compare the response of indigenously produced bacterial consortium-I and consortium-II in degrading polyvinyl chloride (PVC). These consortia were developed by using different combination of bacterial strains of Pseudomonas otitidis, Bacillus cereus, and Acanthopleurobacter pedis from waste disposal sites of Northern India after their identification via 16S rDNA sequencing. The progressive degradation of PVC by consortia was examined via scanning electron microscopy, atomic force microscopy, UV-vis, FT-IR spectra, gel permeation chromatography, and differential scanning calorimetry analysis at different incubations and time intervals. The consortium-II was superior over consortium-I in degrading the PVC. Further, the carbon source utilization analysis revealed that the extensive use of consortia has not any effect on functional diversity of native soil microbes.


Assuntos
Consórcios Microbianos/genética , Cloreto de Polivinila/metabolismo , Poluentes do Solo/metabolismo , Biodegradação Ambiental , Tipagem Molecular , RNA Ribossômico 16S/genética , Microbiologia do Solo
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...