Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 4 de 4
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
3D Print Addit Manuf ; 11(2): e764-e772, 2024 Apr 01.
Artigo em Inglês | MEDLINE | ID: mdl-38689930

RESUMO

Additive manufacturing is becoming a global phenomenon due to its versatile properties and numerous benefits, which is not possible by conventional machining processes. Fused deposition modeling (FDM) shows a huge potential of shift from rapid prototyping toward the rapid manufacturing. Nowadays, the strength of the FDM-printed parts is very important to consider along with all the printing parameters, which affect the strength of these parts. This study includes the investigation of printing parameters (infill density, layer thickness, and shell count) on the strength of FDM-printed parts of acrylonitrile butadiene styrene (ABS) and carbon fiber-reinforced ABS (ABS-CF). These printing parameters directly affect the quality as well as the strength of the 3D-printed parts through FDM. Tensile tests were performed on the universal testing machine on both types of printed parts. The optimized parameters for the 3D-printed samples of the pristine ABS are found to be 0.1045 mm of layer thickness, 57.72% of infill density, and 7.63 numbers of shell count, while the optimum parameters obtained for ABS-CF are 0.2780 mm of layer thickness, 28.37% of infill density, and 9.88 numbers of shell count. The results show that the layer thickness and shell count have a significant effect on the ultimate tensile strength of the 3D-printed parts.

2.
Front Chem ; 9: 737033, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-34646812

RESUMO

The comparative utilization of solar thermal or photovoltaic systems has significantly increased to fulfill the requirement of electricity and heat since few decades. These hybrid systems produce both thermal and electrical energy simultaneously. In recent times, increasing interest is being redirected by researchers in exploiting variety of nanoparticles mixed with miscellaneous base fluids (hybrid nanofluid) for these hybrid systems. This new class of colloidal suspensions has many fascinating advantages as compared to conventional types of nanofluids because of their modified and superior rheological and thermophysical properties which makes them appealing for solar energy devices. Here, we have attempted to deliver an extensive overview of the synthetic methodologies of hybrid nanofluids and their potential in PV/T and solar thermal energy systems. A detailed comparison between conventional types of nanofluids and hybrid nanofluids has been carried out to present in-depth understanding of the advantages of the hybrid nanofluids. The documented reports reveal that enhanced thermal properties of hybrid nanofluids promise the increased performance of solar thermal PV/T systems. Additionally, the unique properties such as nanoparticles concentration and type of base fluid, etc. greatly influence the behavior of hybrid nanofluidic systems. Finally, the outlook, suggestions, and challenges for future research directions are discussed.

3.
J Environ Manage ; 287: 112257, 2021 Jun 01.
Artigo em Inglês | MEDLINE | ID: mdl-33690013

RESUMO

The economic developments around the globe resulted in the increased demand of energy, which overburdened the supply chain sources of energy. Fossil fuel reserves are exploited to meet the high demand of energy and their combustion is becoming the main source of environmental pollution. So there is dire need to find safe, renewable and sustainable energy resources. Waste to energy (WtE) may be viewed as a possible alternate source of energy, which is economically and environmentally sustainable. Municipal solid waste (MSW) is a major contributor to the development of renewable energy and sustainable environment. At present the scarcity of renewable energy resources and disposal of MSW is a challenging problem for the developing countries, which has generated a wide ranging socioeconomic and environmental problems. This situation stimulates the researchers to develop alternatives for converting WtE under a variety of scenarios. Herein, the present scenario in developing the WtE technologies such as, thermal conversion methods (Incineration, Gasification, Pyrolysis, Torrefaction), Plasma technology, Biochemical methods, Chemical and Mechanical methods, Bio-electrochemical process, Mechanical biological treatment (MBT), Photo-biological processes for efficacious energy recovery and the challenges confronted by developing and developed countries. In this review, a framework for the evaluation of WtE technologies has been presented for the ease of researchers working in the field. Furthermore, this review concluded that WtE is a potential renewable energy source that will partially satisfy the demand for energy and ensure an efficient MSW management to overcome the environmental pollution.


Assuntos
Eliminação de Resíduos , Gerenciamento de Resíduos , Biomassa , Incineração , Resíduos Sólidos , Tecnologia
4.
Membranes (Basel) ; 9(7)2019 Jul 02.
Artigo em Inglês | MEDLINE | ID: mdl-31269768

RESUMO

Separators with high porosity, mechanical robustness, high ion conductivity, thin structure, excellent thermal stability, high electrolyte uptake and high retention capacity is today's burning research topic. These characteristics are not easily achieved by using single polymer separators. Inorganic nanoparticle use is one of the efforts to achieve these attributes and it has taken its place in recent research. The inorganic nanoparticles not only improve the physical characteristics of the separator but also keep it from dendrite problems, which enhance its shelf life. In this article, use of inorganic particles for lithium-ion battery membrane modification is discussed in detail and composite membranes with three main types including inorganic particle-coated composite membranes, inorganic particle-filled composite membranes and inorganic particle-filled non-woven mates are described. The possible advantages of inorganic particles application on membrane morphology, different techniques and modification methods for improving particle performance in the composite membrane, future prospects and better applications of ceramic nanoparticles and improvements in these composite membranes are also highlighted. In short, the contents of this review provide a fruitful source for further study and the development of new lithium-ion battery membranes with improved mechanical stability, chemical inertness and better electrochemical properties.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...