Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 74
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Carcinogenesis ; 2024 Apr 04.
Artigo em Inglês | MEDLINE | ID: mdl-38573327

RESUMO

Telomerase reactivation is implicated in approximately 85% of human cancers, yet its underlying mechanism remains elusive. In this study, we elucidate that the Cullin RING Ubiquitin Ligase 4 (CRL4) complex drives the reactivation of human telomerase reverse transcriptase (hTERT) in colorectal cancer (CRC) by degrading the tumor suppressor, menin 1 (MEN1). Our data show that, in noncancerous intestinal epithelial cells, the transcription factor specificity protein 1 (Sp1) recruits both the histone acetyltransferase p300 and MEN1 to suppress hTERT expression, thus maintaining telomere shortness post-cell division. Inflammation-induced microenvironments trigger an activation of the CRL4DCAF4 E3 ligase, leading to MEN1 ubiquitination and degradation in CRC cells. This process nullifies MEN1's inhibitory action, reactivates hTERT expression at the transcriptional level, interrupts telomere shortening, and spurs uncontrolled cellular proliferation. Notably, MEN1 overexpression in CRC cells partially counteracts these oncogenic phenotypes. NSC1517, an inhibitor of the CRL4DCAF4 complex identified through high-throughput screening from a plant-derived chemical pool, hinders MEN1 degradation, attenuates hTERT expression, and suppresses tumor growth in mouse xenograft models. Collectively, our research elucidates the transcriptional mechanism driving hTERT reactivation in CRC. Targeting the CRL4DCAF4 E3 ligase emerges as a promising strategy to counteract cancer cell immortalization and curb tumor progression.

2.
J Evid Based Med ; 2024 Apr 02.
Artigo em Inglês | MEDLINE | ID: mdl-38566344

RESUMO

OBJECTIVE: This study aimed to quantify the association between step count and multiple health outcomes in a healthy population. METHODS: PubMed, Embase, Web of Science, and The Cochrane Library were systematically searched for systematic reviews and meta-analyses from inception to April 1, 2022. Literature screening, data extraction, and data analysis were performed in this umbrella review. The intervention factor was daily step counts measured based on devices. Multiple health outcomes included metabolic diseases, cardiovascular diseases, all-cause mortality, and other outcomes in the healthy population. RESULTS: Twenty studies with 94 outcomes were identified in this umbrella review. The increase in daily step count contributed to a range of human health outcomes. Furthermore, the special population, different age groups, countries, and cohorts should be carefully considered. Negative correlation between step counts and the following outcomes: metabolic outcomes, cardiovascular diseases, all-cause mortality, postural balance, cognitive function, and mental health. However, there was no association between participation in the outdoor walking group and the improvement of systolic blood pressure and diastolic blood pressure. Analysis of the dose-response association between increasing daily step count and the risk of cardiovascular disease events and all-cause mortality showed a substantially linear relationship. CONCLUSION: A wide range of health outcomes can benefit from the right number of steps.

3.
J Hazard Mater ; 469: 133982, 2024 May 05.
Artigo em Inglês | MEDLINE | ID: mdl-38460256

RESUMO

Enhancing Fe(VI) oxidation ability by generating high-valent iron-oxo species (Fe(IV)/Fe(V)) has attracted continuous interest. This work for the first time reports the efficient activation of Fe(VI) by a well-known aza-aromatic chelating agent 2,2'-bipyridyl (BPY) for micropollutant degradation. The presence of BPY increased the degradation constants of six model compounds (i.e., sulfamethoxazole (SMX), diclofenac (DCF), atenolol (ATL), flumequine (FLU), 4-chlorophenol (4-CP), carbamazepine (CBZ)) with Fe(VI) by 2 - 6 folds compared to those by Fe(VI) alone at pH 8.0. Lines of evidence indicated the dominant role of Fe(IV)/Fe(V) intermediates. Density functional theory calculations suggested that the binding of Fe(III) to one or two BPY molecules initiated the oxidation of Fe(III) to Fe(IV) by Fe(VI), while Fe(VI) was reduced to Fe(V). The increased exposures of Fe(IV)/Fe(V) were experimentally verified by the pre-generated Fe(III) complex with BPY and using methyl phenyl sulfoxide as the probe compound. The presence of chloride and bicarbonate slightly affected model compound degradation by Fe(VI) in the presence of BPY, while a negative effect of humic acid was obtained under the same conditions. This work demonstrates the potential of N-donor heterocyclic ligand to activate Fe(VI) for micropollutant degradation, which is instructive for the Fe(VI)-based oxidation processes.

4.
ACS Appl Mater Interfaces ; 15(46): 53815-53826, 2023 Nov 22.
Artigo em Inglês | MEDLINE | ID: mdl-37948095

RESUMO

Defect engineering has proven to be one of the most effective approaches for the design of high-performance electrocatalysts. Current methods to create defects typically follow a top-down strategy, cutting down the pristine materials into fragmented pieces with surface defects yet also heavily destroying the framework of materials that imposes restrictions on the further improvements in catalytic activity. Herein, we describe a bottom-up strategy to prepare free-standing NiFe layered double hydroxide (LDH) nanoplatelets with abundant internal defects by controlling their growth behavior in acidic conditions. Our best-performing nanoplatelets exhibited the lowest overpotential of 241 mV and the lowest Tafel slope of 43 mV/dec for the oxygen evolution reaction (OER) process, superior to the pristine LDHs and other reference cation-defective LDHs obtained by traditional etching methods. Using both material characterization and density functional theory (DFT) simulation has enabled us to develop relationships between the structure and electrochemical properties of these catalysts, suggesting that the enhanced electrocatalytic activity of nanoplatelets mainly results from their defect-abundant structure and stable layered framework with enhanced exposure of the (001) surface.

5.
Phys Chem Chem Phys ; 25(44): 30670-30678, 2023 Nov 15.
Artigo em Inglês | MEDLINE | ID: mdl-37933752

RESUMO

Previous research is predominantly in consensus on the reaction mechanism between formaldehyde (HCHO) and oxygen (O2) over catalysts. However, water vapor (H2O) always remains present during the reaction, and the intrinsic role of H2O in the oxidation of HCHO still needs to be fully understood. In this study, a single-atom catalyst, Al-doped C2N substrate, Al1/C2N, can be adopted as an example to investigate the relationship and interaction among O2, H2O, and HCHO. Density functional theory (DFT) calculations and microkinetic simulations were carried out to interpret the enhancement mechanism of H2O on HCHO oxidation over Al1/C2N. The outcome demonstrates that H2O directly breaks down a surface hydroxyl group on Al1/C2N, considerably lowering the energy required to form crucial intermediates, thus promoting oxidation. Without H2O, Al1/C2N cannot effectively oxidize HCHO at ambient temperature. During oxidation, H2O takes the major catalytic responsibility, delaying the entrance of O2 into the reaction, which is not only the product but also the crucial reactant to initiate catalysis, thereby sustaining the catalytic cycle. Moreover, this study predicts the catalytic behavior at various temperatures and presents feasible recommendations for regulating the reaction rates. The oxidation mechanism of HCHO is explained at the molecular level in this study, emphasizing the intrinsic role of water on Al1/C2N, which fills in the relevant studies for HCHO oxidation on two-dimensional carbon materials.

6.
Environ Sci Technol ; 57(29): 10804-10815, 2023 07 25.
Artigo em Inglês | MEDLINE | ID: mdl-37431633

RESUMO

Carbon nanotubes (CNTs) and their derivatives have been widely exploited to activate various oxidants for environmental remediation. However, the intrinsic mechanism of CNTs-driven periodate (PI) activation remains ambiguous, which significantly impedes their scientific progress toward practical application. Here, we found that CNTs can strongly boost PI activation for the oxidation of various phenols. Reactive oxygen species analysis, in situ Raman characterization, galvanic oxidation process experiments, and electrochemical tests revealed that CNTs could activate PI to form high-potential metastable intermediates (CNTs-PI*) rather than produce free radicals and 1O2, thereby facilitating direct electron transfer from the pollutants to PI. Additionally, we analyzed quantitative structure-activity relationships between rate constants of phenols oxidation and double descriptors (e.g., Hammett constants and logarithm of the octanol-water partition coefficient). The adsorption of phenols on CNT surfaces and their electronic properties are critical factors affecting the oxidation process. Besides, in the CNTs/PI system, phenol adsorbed the CNT surfaces was oxidized by the CNTs-PI* complexes, and products were mainly generated via the coupling reaction of phenoxyl radical. Most of the products adsorbed and accumulated on the CNT surfaces realized phenol removal from the bulk solution. Such a unique non-mineralization removal process achieved an extremely high apparent electron utilization efficiency of 378%. The activity evaluation and theoretical calculations of CNT derivatives confirmed that the carbonyl/ketonic functional groups and double-vacancy defects of the CNTs were the primary active sites, where high-oxidation-potential CNTs-PI* were formed. Further, the PI species could achieve a stoichiometric decomposition into iodate, a safe sink of iodine species, without the generation of typical iodinated byproducts. Our discovery provides new mechanistic insight into CNTs-driven PI activation for the green future of environmental remediation.


Assuntos
Nanotubos de Carbono , Nanotubos de Carbono/química , Fenol , Oxirredução , Fenóis
7.
Sci Total Environ ; 883: 163806, 2023 Jul 20.
Artigo em Inglês | MEDLINE | ID: mdl-37127161

RESUMO

VUV photolysis presents a simple process for VOCs degradation, while the poor mineralization rate and extensive by-products greatly limit its application. In this study, the contribution and synergy between •OH and •O2- to toluene degradation in the VUV-based process were comprehensively investigated by controlling water and oxygen in the gas flow. It was found that •OH promoted the initial degradation of toluene and macromolecular intermediates, while •O2- dominated toluene mineralization by boosting the formation of small molecules and CO2. Compared with the •OH-dominated VUV photolysis, the presence of catalyst greatly changed the degradation pathway, promoted toluene mineralization into CO2 and reduced health toxicity via promoting •O2- formation. This study originally focuses on the key role of •O2- in VOCs deep oxidation and provides an effective strategy to boost its clean mineralization via the VUV-based process.

8.
JACS Au ; 3(5): 1496-1506, 2023 May 22.
Artigo em Inglês | MEDLINE | ID: mdl-37234109

RESUMO

The construction of highly active catalysts presents great prospects, while it is a challenge for peroxide activation in advanced oxidation processes (AOPs). Herein, we facilely developed ultrafine Co clusters confined in mesoporous silica nanospheres containing N-doped carbon (NC) dots (termed as Co/NC@mSiO2) via a double-confinement strategy. Compared with the unconfined counterpart, Co/NC@mSiO2 exhibited unprecedented catalytic activity and durability for removal of various organic pollutants even in extremely acidic and alkaline environments (pH from 2 to 11) with very low Co ion leaching. Experiments and density functional theory (DFT) calculations proved that Co/NC@mSiO2 possessed strong peroxymonosulphate (PMS) adsorption and charge transfer capability, enabling the efficient O-O bond dissociation of PMS to HO• and SO4•- radicals. The strong interaction between Co clusters and mSiO2 containing NC dots contributed to excellent pollutant degradation performances by optimizing the electronic structures of Co clusters. This work represents a fundamental breakthrough in the design and understanding of the double-confined catalysts for peroxide activation.

9.
J Hazard Mater ; 456: 131613, 2023 Aug 15.
Artigo em Inglês | MEDLINE | ID: mdl-37224710

RESUMO

Cobalt oxide (CoOx) is a common catalyst for plasma catalytic elimination of volatile organic compounds (VOCs). However, the catalytic mechanism of CoOx under radiation of plasma is still unclear, such as how the relative importance of the intrinsic structure of the catalyst (e.g., Co3+ and oxygen vacancy) and the specific energy input (SEI) of the plasma for toluene decomposition performance. CoOx - Î³-Al2O3 catalysts were prepared and evaluated by toluene decomposition performance. Changing the calcination temperature of the catalyst altered the content of Co3+ and oxygen vacancies in CoOx, resulting in different catalytic performance. The results of the artificial neural network (ANN) models presented that the relative importance of three reaction parameters (SEI, Co3+, and oxygen vacancy) on the mineralization rate and CO2 selectivity were as follows: SEI > oxygen vacancy > Co3+ , and SEI > Co3+ > oxygen vacancy, respectively. Oxygen vacancy is essential for mineralization rate, and CO2 selectivity is more dependent on Co3+ content. Furthermore, a possible reaction mechanism of toluene decomposition was proposed according to the analysis results of in-situ DRIFTS and PTR-TOF-MS. This work provides new ideas for the rational design of CoOx catalysts in plasma catalytic systems.

10.
Water Res ; 235: 119889, 2023 May 15.
Artigo em Inglês | MEDLINE | ID: mdl-36966682

RESUMO

The photolysis of monochloramine (NH2Cl), a widely used disinfectant, under UVC irradiation produces different radicals for the micropollutant degradation. For the first time, this study demonstrates the degradation of bisphenol A (BPA) via the NH2Cl activation by graphitic carbon nitride (g-C3N4) photocatalysis using visible light-LEDs at 420 nm, termed as the Vis420/g-C3N4/NH2Cl process. The process produces •NH2, •NH2OO, •NO and •NO2 via the eCB-- and O2•--induced activation pathways and •NHCl and NHClOO• via the hVB+-induced activation pathway. The produced reactive nitrogen species (RNS) enhanced 100% of the BPA degradation compared with the Vis420/g-C3N4. Density functional theory calculations confirmed the proposed NH2Cl activation pathways and further demonstrated that eCB-/O2•- and hVB+ induced the cleavage of N-Cl and N-H bonds in NH2Cl, respectively. The process converted 73.5% of the decomposed NH2Cl to nitrogen-containing gas, compared with that of approximately 20% in the UVC/NH2Cl process, leaving much less ammonia, nitrite and nitrate in water. Among different operating conditions and water matrices tested, of particular significance is natural organic matter of 5 mgDOC/L only reduced 13.1% of the BPA degradation compared against that of at least 46% reduction in the UVC/NH2Cl process. Only 0.017-0.161 µg/L of disinfection byproducts were produced, two orders of magnitudes lower than that in the UVC/chlorine and UVC/NH2Cl processes. The combined use of visible light-LEDs, g-C3N4 and NH2Cl significantly improves the micropollutant degradation and reduces the energy consumption and byproduct formation of the NH2Cl-based AOP.


Assuntos
Poluentes Químicos da Água , Purificação da Água , Espécies Reativas de Nitrogênio , Cloro , Luz , Água , Catálise
11.
Environ Sci Technol ; 57(47): 18607-18616, 2023 Nov 28.
Artigo em Inglês | MEDLINE | ID: mdl-36745772

RESUMO

In this study, novel light emitting diode (LED)-activated periodate (PI) advanced oxidation process (AOP) at an irradiation wavelength in the ultraviolet A range (UVA, UVA-LED/PI AOP) was developed and investigated using naproxen (NPX) as a model micropollutant. The UVA-LED/PI AOP remarkably enhanced the degradation of NPX and seven other selected micropollutants with the observed pseudo-first-order rate constants ranging from 0.069 ± 0.001 to 4.50 ± 0.145 min-1 at pH 7.0, demonstrating a broad-spectrum micropollutant degradation ability. Lines of evidence from experimental analysis and kinetic modeling confirmed that hydroxyl radical (•OH) and ozone (O3) were the dominant species generated in UVA-LED/PI AOP, and they contributed evenly to NPX degradation. Increasing the pH and irradiation wavelength negatively affected NPX degradation, and this could be well explained by the decreased quantum yield (ΦPI) of PI. The degradation kinetics of NPX by the UVA-LED/PI AOP in the presence of water matrices (i.e., chloride, bicarbonate, and humic acid) and in real waters were examined, and the underlying mechanisms were illustrated. A total of nine transformation products were identified from NPX oxidation by the UVA-LED/PI AOP, mainly via hydroxylation, dealkylation, and oxidation pathways. The UVA-LED/PI AOP proposed might be a promising technology for the treatment of micropollutants in aqueous solutions. The pivotal role of ΦPI during light photolysis of PI may guide the future design of light-assisted PI AOPs.


Assuntos
Ozônio , Poluentes Químicos da Água , Purificação da Água , Radical Hidroxila , Poluentes Químicos da Água/análise , Água , Oxirredução , Cinética , Raios Ultravioleta
12.
Environ Sci Technol ; 57(8): 3334-3344, 2023 02 28.
Artigo em Inglês | MEDLINE | ID: mdl-36734031

RESUMO

Accelerating the rate-limiting Fe3+/Fe2+ circulation in Fenton reactions through the addition of reducing agents (or co-catalysts) stands out as one of the most promising technologies for rapid water decontamination. However, conventional reducing agents such as hydroxylamine and metal sulfides are greatly restricted by three intractable challenges: (1) self-quenching effects, (2) heavy metal dissolution, and (3) irreversible capacity decline. To this end, we, for the first time, introduced redox-active polymers as electron shuttles to expedite the Fe3+/Fe2+ cycle and promote H2O2 activation. The reduction of Fe3+ mainly took place at active N-H or O-H bonds through a proton-coupled electron transfer process. As electron carriers, H atoms at the solid phase could effectively inhibit radical quenching, avoid metal dissolution, and maintain long-term reducing capacity via facile regeneration. Experimental and density functional theory (DFT) calculation results indicated that the activity of different polymers shows a volcano curve trend as a function of the energy barrier, highest occupied molecular orbital-lowest unoccupied molecular orbital (HOMO-LUMO) gap, and vertical ionization potential. Thanks to the appropriate redox ability, polyaniline outperforms other redox-active polymers (e.g., poypyrrole, hydroquinone resin, poly(2,6-diaminopyridine), and hexaazatrinaphthalene framework) with a highest iron reduction capacity up to 5.5 mmol/g, which corresponds to the state transformation from leucoemeraldine to emeraldine. Moreover, the proposed system exhibited high pollutant removal efficiency in a flow-through reactor for 8000 bed volumes without an obvious decline in performance. Overall, this work established a green and sustainable oxidation system, which offers great potential for practical organic wastewater remediation.


Assuntos
Peróxido de Hidrogênio , Ferro , Ferro/química , Peróxido de Hidrogênio/química , Substâncias Redutoras , Elétrons , Oxirredução
13.
J Hazard Mater ; 447: 130809, 2023 Apr 05.
Artigo em Inglês | MEDLINE | ID: mdl-36680902

RESUMO

Leakage of light non-aqueous phase liquid (LNAPL) into soil can cause serious environmental issues. In this study, a two-dimensional device with adjustable dip angles was designed to investigate the migration and redistribution of LNAPL in natural inclined stratified soil media by the light transmission visualization (LTV) technology. The captured experimental images were processed to obtain the diesel distribution based on gray value which could represent the LNAPL saturation distribution. LNAPL may not be able to penetrate through the fine-coarse interface due to the capillary barrier effects. In this case, the vertical and horizontal migration distances (V and H), contaminated area (S), as well as deviation angle (γ) of centroid increased with the dip angle. Increasing the leakage amount to more than 30 mL would result in LNAPL breakthrough at the 10°-inclined interface, leading to much larger V, H, S, and γ than those at 10 mL, while 20-mL LNAPL failed to break through. In the latter case, a lower leakage rate than 10 mL/min would cause larger H and γ but similar V or S in the long term. This study could enrich the understanding of LNAPL contamination in vadose zone, providing reference for the prediction and treatment in realistic inclined contaminated sites.

14.
J Hazard Mater ; 442: 130074, 2023 01 15.
Artigo em Inglês | MEDLINE | ID: mdl-36193610

RESUMO

Two-dimensional carbon materials with various N atom proportions (2D-CNMs) are constructed to clarify the optimal catalyst for carbamazepine (CBZ) oxidation and the inner mechanism for persulfate-based advanced oxidation processes (P-AOPs). Results show that peroxydisulfate (PDS) can be activated by all 2D-CNMs with the order of C3N > C71N > graphene > C2N > CN, while C3N is the only catalyst for peroxymonosulfate (PMS) activation. The C3N with the maximum graphitic N can activate PDS and PMS in a wide temperature range at any pH, and demonstrates the optimal CBZ oxidation performance. Notably, the graphitic N atoms promote P-AOPs from five aspects: (i) electron structure, (ii) electrical conductivity, (iii) electron transfer from persulfate to catalysts, (iv) electron jump of co-system before and after activation, (v) interaction between catalyst and persulfate. The most vigorous activity of C3N is attributed to the greatest number of graphitic N. This work clarifies the essential role of graphitic N atoms with implications for the catalyst design, and facilitates the environmental applications of P-AOPs for micropollutant abatement.


Assuntos
Grafite , Águas Residuárias , Carbono , Nitrogênio , Carbamazepina
15.
ACS Appl Mater Interfaces ; 14(50): 55616-55626, 2022 Dec 21.
Artigo em Inglês | MEDLINE | ID: mdl-36475586

RESUMO

The practical implementation of lithium-sulfur batteries (LSBs) has been impeded by the sluggish redox kinetics of lithium polysulfides (LiPSs) and shuttle effect of soluble LiPSs during charge/discharge. It is desirable to exploit materials combining superior electrical conductivity with excellent catalytic activity for use as electrocatalysts in LSBs. Herein, we report the employment of chemical vapor transport (CVT) method followed by an electrochemical intercalation process to fabricate high-quality single-crystalline semimetallic ß-MoTe2 nanosheets, which are utilized to manipulate the LiPSs conversion kinetics. The first-principles calculations prove that ß-MoTe2 could lower the Gibbs free-energy barrier for Li2S2 transformation to Li2S. The wavefunction analysis demonstrates that the p-p orbital interaction between Te p and S p orbitals accounts for the strong electronic interaction between the ß-MoTe2 surface and Li2S2/Li2S, making bonding and electron transfer more efficient. As a result, a ß-MoTe2/CNT@S-based LSB cell can deliver an excellent cycling performance with a low capacity fade rate of 0.11% per cycle over 300 cycles at 1C. Our work might not only provide a universal route to prepare high-quality single-crystalline transition-metal dichalcogenides (TMDs) nanosheets for use as electrocatalysts in LSBs, but also suggest a different viewpoint for the rational design of LiPSs conversion electrocatalysts.

16.
Front Chem ; 10: 1085035, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-36451928

RESUMO

[This corrects the article DOI: 10.3389/fchem.2022.978698.].

17.
Complement Ther Med ; 71: 102900, 2022 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-36372315

RESUMO

BACKGROUND: Some adverse events following immunization (AEFI) were observed in potential corelation with COVID-19 vaccination but without prevention or ongoing trial for it. We aimed to investigate efficacy of auricular acupressure (AuriAc) therapy in preventing AEFI after first dosage of the vaccine. METHODS: We performed a multicentre randomized controlled trial with three arms, including AuriAc, SAuriAc (sham auricular acupressure), and TrAsU (treatment as usual) group, carried out in four medical institutions in Chengdu, China, from March 17th to April 23rd, 2021. We enrolled participants based on eligibility criteria and randomized them into three groups: AuriAc (AEFI-specific auricular points applied, n = 52), SAuriAc (n = 51) or TrAsU (n = 44) group. Primary outcomes were percentages of any AEFI and local pain, and secondary outcomes were percentages who reported other AEFI. They were followed at 1, 3, 5, 7, and 14 days, by phone or online, with severity evaluated. RESULTS: 147 participants (73.47% females) were included with median age as 31 years (25-45, IQR). One day after the injection, participants in AuriAc group reported significant reduction on percentages of any AEFI [intention-to-treat, difference of percentage (DP) = -20.13, 95%CI: - 0.39, - 0.02, p = 0.01; per-protocol, DP = -22.21, 95%CI: - 0.40, - 0.03, P = 0.02] and local pain (per-protocol, DP = -18.40, 95%CI: -0.36, -0.01, P = 0.04), compared with TrAsU group. The effects were slight at other follow-up days and for other outcomes, and with a low percentage of mild local allergic reactions. CONCLUSIONS: We firstly explored potential of AuriAc for preventing AEFI related to COVID-19 vaccine injection, which is beneficial for the vaccine recipients, but evidence is limited. TRIAL REGISTRATION: chictr.org.cn no. ChiCTR2100043210 (http://www.chictr.org.cn/showproj.aspx?proj=121519).


Assuntos
Acupressão , COVID-19 , Vacinas , Feminino , Humanos , Masculino , Vacinas contra COVID-19/efeitos adversos , COVID-19/prevenção & controle , Dor
18.
Mol Nutr Food Res ; 66(23): e2200167, 2022 12.
Artigo em Inglês | MEDLINE | ID: mdl-36111960

RESUMO

Spicy foods and chili peppers contain the primary ingredient capsaicin, which has potential health benefits. However, their efficacy in some health outcomes is also fiercely disputed, and some side effects have been confirmed. To assess the quality and strength of the associations between spicy food and chili pepper consumption and different health outcomes. An umbrella review is performed in humans. Eleven systematic reviews and meta-analyses with a total of 27 findings are identified. The health effect of consuming spicy food and chili peppers is unclear. Furthermore, the characteristics and context of different world regions and populations should be carefully considered. Direct correlations exist in esophageal cancer, gastric cancer, and gallbladder cancer. However, negative connections are reported in metabolism, mortality, and cardiovascular disease. Dose-response analysis reveals a significant nonlinear relationship between gastric cancer risk and capsaicin intake. The consumption of spicy foods and chili peppers is typically safe. However, high-quality proof is available to confirm this conclusion.


Assuntos
Capsicum , Doenças Cardiovasculares , Neoplasias Gástricas , Humanos , Capsaicina/efeitos adversos
19.
J Am Chem Soc ; 144(39): 17865-17875, 2022 10 05.
Artigo em Inglês | MEDLINE | ID: mdl-36075889

RESUMO

Enhancing the enzymatic activity inside metal-organic frameworks (MOFs) is a critical challenge in chemical technology and bio-technology, which, if addressed, will broaden their scope in energy, food, environmental, and pharmaceutical industries. Here, we report a simple yet versatile and effective strategy to optimize biocatalytic activity by using MOFs to rapidly "lock" the ultrasound (US)-activated but more fragile conformation of metalloenzymes. The results demonstrate that up to 5.3-fold and 9.3-fold biocatalytic activity enhancement of the free and MOF-immobilized enzymes could be achieved compared to those without US pretreatment, respectively. Using horseradish peroxidase as a model, molecular dynamics simulation demonstrates that the improved activity of the enzyme is driven by an opened gate conformation of the heme active site, which allows more efficient substrate binding to the enzyme. The intact heme active site is confirmed by solid-state UV-vis and electron paramagnetic resonance, while the US-induced enzyme conformation change is confirmed by circular dichroism spectroscopy and Fourier-transform infrared spectroscopy. In addition, the improved activity of the biocomposites does not compromise their stability upon heating or exposure to organic solvent and a digestion cocktail. This rapid locking and immobilization strategy of the US-induced active enzyme conformation in MOFs gives rise to new possibilities for the exploitation of highly efficient biocatalysts for diverse applications.


Assuntos
Estruturas Metalorgânicas , Metaloproteínas , Enzimas Imobilizadas/química , Heme , Peroxidase do Rábano Silvestre , Estruturas Metalorgânicas/química , Solventes
20.
Adv Mater ; 34(44): e2205674, 2022 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-36073657

RESUMO

Single-atom catalysts (SACs) exhibit unparalleled atomic utilization and catalytic efficiency, yet it is challenging to modulate SACs with highly dispersed single-atoms, mesopores, and well-regulated coordination environment simultaneously and ultimately maximize their catalytic efficiency. Here, a generalized strategy to construct highly active ferric-centered SACs (Fe-SACs) is developed successfully via a biomineralization strategy that enables the homogeneous encapsulation of metalloproteins within metal-organic frameworks (MOFs) followed by pyrolysis. The results demonstrate that the constructed metalloprotein-MOF-templated Fe-SACs achieve up to 23-fold and 47-fold higher activity compared to those using metal ions as the single-atom source and those with large mesopores induced by Zn evaporation, respectively, as well as up to a 25-fold and 1900-fold higher catalytic efficiency compared to natural enzymes and natural-enzyme-immobilized MOFs. Furthermore, this strategy can be generalized to a variety of metal-containing metalloproteins and enzymes. The enhanced catalytic activity of Fe-SACs benefits from the highly dispersed atoms, mesopores, as well as the regulated coordination environment of single-atom active sites induced by metalloproteins. Furthermore, the developed Fe-SACs act as an excellent and effective therapeutic platform for suppressing tumor cell growth. This work advances the development of highly efficient SACs using metalloproteins-MOFs as a template with diverse biotechnological applications.


Assuntos
Estruturas Metalorgânicas , Metaloproteínas , Estruturas Metalorgânicas/química , Biocatálise , Catálise , Ferro/química
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...