Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 57
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Materials (Basel) ; 14(19)2021 Oct 03.
Artigo em Inglês | MEDLINE | ID: mdl-34640193

RESUMO

In this study, the introduction of a positive charge on the surface of a shape memory material was investigated to enhance cell affinity. To achieve this, the direct chemical modification of a material surface was proposed. Sheet-type, crosslinked poly(caprolactone-co-α-bromo-ɤ-butyrolactone) (poly(CL-co-BrBL)) were prepared, and the direct reaction of amino compounds with bromo groups was conducted on the material surface with a positive charge. Branched poly(CL-co-BrBL) was prepared, followed by the introduction of methacryloyl groups to each chain end. Using the branched macromonomers, stable and sheet-type materials were derived through UV-light irradiation. Then, the materials were soaked in an amino compound solution to react with the bromo groups under various conditions. Differential scanning calorimetry and surface analysis of the modified materials indicated that 10 vol% of N, N-dimethylethylenediamine in n-hexane and 1 h soaking time were optimal to maintain the inherent thermal properties. The achievement of increased luminance and a positive zeta potential proved that the direct modification method effectively introduced the positive charge only on the surface, thereby enhancing cell affinity.

2.
Pharmaceutics ; 12(11)2020 Nov 11.
Artigo em Inglês | MEDLINE | ID: mdl-33187079

RESUMO

For reducing side effects and improvement of swallowing, we studied the encapsulation of activated carbon formulations with a hollow-type spherical bacterial cellulose (HSBC) gel using two kinds of encapsulating methods: Methods A and B. In Method A, the BC gelatinous membrane was biosynthesized using Komagataeibacter xylinus (K. xylinus) at the interface between the silicone oil and cell suspension containing activated carbon. In Method B, the bacterial cellulose (BC) gelatinous membrane was formed at the interface between the cell suspension attached to the alginate gel containing activated carbon and the silicone oil. After the BC gelatinous membrane was biosynthesized by K. xylnus, alginate gel was removed by soaking in a phosphate buffer. The activated carbon encapsulated these methods could neither pass through the BC gelatinous membrane of the HSBC gel nor leak from the interior cavity of the HSBC gel. The adsorption ability was evaluated using indole, which is a precursor of the uremic causative agent. From curve-fitting, the adsorption process followed the pseudo-first-order and intra-particle diffusion models, and the diffusion of the indole molecules at the surface of the encapsulated activated carbon within the HSBC gel was dominant at the initial stage of adsorption. It was observed that the adsorption of the encapsulated activated carbon by the intraparticle diffusion process became dominant with longer adsorption times.

3.
Int J Mol Sci ; 20(19)2019 Oct 04.
Artigo em Inglês | MEDLINE | ID: mdl-31590233

RESUMO

A hollow-type spherical bacterial cellulose (HSBC) gel prepared using conventional methods cannot load particles larger than the pore size of the cellulose nanofiber network of bacterial cellulose (BC) gelatinous membranes. In this study, we prepared a HSBC gel encapsulating target substances larger than the pore size of the BC gelatinous membranes using two encapsulating methods. The first method involved producing the BC gelatinous membrane on the surface of the core that was a spherical alginate gel with a diameter of 2 to 3 mm containing the target substances. With this method, the BC gelatinous membrane was biosynthesized using Gluconacetobacter xylinus at the interface between the cell suspension attached onto the alginate gel and the silicone oil. The second method involved producing the BC gel membrane on the interface between the silicone oil and cell suspension, as well as the spherical alginate gel with a diameter of about 1 mm containing target substances. After the BC gelatinous membrane was biosynthesized, an alginate gel was dissolved in a phosphate buffer to prepare an HSBC gel with the target substances. These encapsulated substances could neither pass through the BC gelatinous membrane of the HSBC gel nor leak from the interior space of the HSBC gel. These results suggest that the HSBC gel had a molecular sieving function. The HSBC gel walls prepared using these methods were observed to be uniform and would be useful for encapsulating bioactive molecules, such as immobilized enzymes in HSBC gel, which is expected to be used as a drug carrier.


Assuntos
Cápsulas/química , Celulose/análogos & derivados , Gluconacetobacter xylinus/química , Microgéis/química , Alginatos/química , Membranas Artificiais , Silicones/química
4.
J Biomed Mater Res A ; 107(5): 955-967, 2019 05.
Artigo em Inglês | MEDLINE | ID: mdl-30684395

RESUMO

Cell sheet tissue engineering is a concept for creating transplantable two-dimensional (2D) and three-dimensional (3D) tissues and organs. This review describes three elements of cell sheet tissue engineering in terms of the chemical and physical effects of material surfaces and the interfacial properties of cell sheets: preparation, harvesting/manipulation and transplantation of cell sheets. An essential technology for the preparation of cell sheets is the use of a temperature-responsive cell culture surface, where the surface of tissue culture polystyrene (TCPS) dish is modified with thin layer of temperature-responsive polymer, poly(N-isopropylacrylamide) (PIPAAm). PIPAAm-immobilized TCPS allows cultured cells to be harvested as a contiguous cell sheet with extracellular matrices (ECMs) by reducing the temperature, while chemical and physical disruption impair ECMs, cell-cell junction, and membrane proteins. Ligand-immobilized and porous hydrophilic PIPAAm-grafted surfaces are able to accelerate cell sheet preparation and harvesting, respectively. In addition, the manipulation of harvested cell sheets with the aid of cell sheet manipulator facilitates the formation of 3D tissues. Cell sheet-based tissues and their transplantation are in seven clinical settings such as heart, cornea, esophagus, periodontal, middle chamber of ear, knee cartilage, and lung. In order to create thick and large 3D tissues and organs, large production of differentiated parenchymal cells from induced pluripotent stem (iPS) cells and vascularization within 3D tissues are key issues. © 2019 Wiley Periodicals, Inc. J Biomed Mater Res Part A: 107A: 955-967, 2019.


Assuntos
Técnicas de Cultura de Células/métodos , Transplante de Células , Engenharia Tecidual/métodos , Animais , Ensaios Clínicos como Assunto , Humanos
5.
Heliyon ; 4(10): e00873, 2018 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-30456320

RESUMO

We developed a novel cultivating system for hollow-type spherical bacterial cellulose (HSBC) gel production without any molds or template. It consisted of floating aqueous medium droplet containing Gluconacetobacter xylinus (G. xylinus) at the boundary of two non-mixed silicone oil layers. The fibrils of bacterial cellulose (BC) were produced at the interface of water and oil phases. Fibril layers effectively thickened layer-by-layer and eventually formed a shell structure. The size of the HSBC gel can be controlled by the volume of dropped cell suspension. For cell suspensions of 50 µL and 10 µL, HSBC gels of approximately 4.0 mm and 2.5 mm were obtained, respectively. The shell of the HSBC gel is the gelatinous membrane formed by well-organized fibril networks; they comprised type-I crystal structure of cellulose. Additionally, we studied release profile of the fluorescein isothiocyanate-dextran (FITC-Dex) and observed that it released rapidly from the HSBC gels compared to from the BC gels obtained by the static culture method. The release behavior from HSBC gel agreed satisfactorily with Higuchi model. Therefore, the shell of HSBC gel is surely a thin gelatinous membrane of BC, and would be useful as a drug release device.

6.
J Food Drug Anal ; 26(2): 869-878, 2018 04.
Artigo em Inglês | MEDLINE | ID: mdl-29567259

RESUMO

The stability and bio-distribution of genes or drug complexes with poly(ethylene oxide)-poly(propylene oxide)-poly(ethylene oxide) (PEO-PPO-PEO, Pluronic F-68) polymeric micelles (PM) are essential for an effective nanosized PM delivery system. We used Förster resonance energy transfer (FRET) pairs with PM and measured the FRET ratio to assess the stability of PM in vitro and in vivo on the cornea. The FRET ratio reached a plateau at 0.8 with 3% PM. Differential scanning calorimetry measurement confirmed the complex formation of FRET pairs with PM. Confocal imaging with the fluorophores fluorescein isothiocyanate isomer I (FITC) and rhodamine B base (RhB) also showed the occurrence of FRET pairs in vitro. The fluorophores were mixed with 3% PM solution or the FITC-labeled PEO-PPO-PEO polymers (FITC-P) were mixed with RhB-labeled plasmids (RhB-DNA). In addition, the in vitro corneal permeation of FRET pair complexes with PM reached a 0.8 FRET ratio. One hour after eye drop administration, FRET pairs colocalized in the cytoplasm, and surrounded and entered the nuclei of cells in the cornea, and the polymers were located in the corneal epithelial layers, as detected through anti-PEG immunohistochemistry. Furthermore, fluorescence colocalization in the cytoplasm and cell nucleus of the corneal epithelium was confirmed in tissues where RhB or RhB-DNA complexed with FITC-P was found to accumulate. We demonstrate that at a concentration of 3%, PM can encapsulate FRET pairs or RhB-DNA and retain their integrity within the cornea 1 h after administration, suggesting the feasibility and stability of PEO-PPO-PEO polymers as a vehicle for drug delivery.


Assuntos
Córnea/química , Sistemas de Liberação de Medicamentos/métodos , Soluções Oftálmicas/química , Plasmídeos/química , Polietilenoglicóis/química , Propilenoglicóis/química , Animais , Córnea/efeitos dos fármacos , Córnea/metabolismo , Portadores de Fármacos/química , Portadores de Fármacos/metabolismo , Sistemas de Liberação de Medicamentos/instrumentação , Transferência Ressonante de Energia de Fluorescência , Interações Hidrofóbicas e Hidrofílicas , Masculino , Camundongos Endogâmicos BALB C , Camundongos Nus , Soluções Oftálmicas/metabolismo , Soluções Oftálmicas/farmacologia , Plasmídeos/metabolismo , Polietilenoglicóis/metabolismo , Propilenoglicóis/metabolismo
7.
Adv Healthc Mater ; 6(9)2017 May.
Artigo em Inglês | MEDLINE | ID: mdl-28169506

RESUMO

A novel shape-memory cell culture platform has been designed that is capable of simultaneously tuning surface topography and dimensionality to manipulate cell alignment. By crosslinking poly(ε-caprolactone) (PCL) macromonomers of precisely designed nanoarchitectures, a shape-memory PCL with switching temperature near body temperature is successfully prepared. The temporary strain-fixed PCLs are prepared by processing through heating, stretching, and cooling about the switching temperature. Temporary nanowrinkles are also formed spontaneously during the strain-fixing process with magnitudes that are dependent on the applied strain. The surface features completely transform from wrinkled to smooth upon shape-memory activation over a narrow temperature range. Shape-memory activation also triggers dimensional deformation in an initial fixed strain-dependent manner. A dynamic cell-orienting study demonstrates that surface topographical changes play a dominant role in cell alignment for samples with lower fixed strain, while dimensional changes play a dominant role in cell alignment for samples with higher fixed strain. The proposed shape-memory cell culture platform will become a powerful tool to investigate the effects of spatiotemporally presented mechanostructural stimuli on cell fate.


Assuntos
Nanoestruturas/química , Poliésteres/química , Animais , Técnicas de Cultura de Células , Sobrevivência Celular/fisiologia , Camundongos , Microscopia de Força Atômica , Microscopia de Fluorescência , Células NIH 3T3
8.
ACS Macro Lett ; 6(9): 1020-1024, 2017 Sep 19.
Artigo em Inglês | MEDLINE | ID: mdl-35650882

RESUMO

Apoptotic cell death serves important roles in homeostasis by eliminating dangerous, damaged, or unnecessary cells without causing an inflammatory response by externalizing phosphatidylserine to the outer leaflet in the phospholipid bilayer. In this study, we newly designed apoptotic cell membrane-inspired monomer and polymer which have the phosphoryl serine group as the anti-inflammatory functional moiety and demonstrate here for the first time that administration of an apoptotic cell membrane-inspired phosphorylserine polymer can protect murine macrophages (RAW 264.7) from lipopolysaccharide-induced inflammation. Interestingly, statistical copolymers with phosphorylcholine monomer that mimicked more precisely the apoptotic cell membrane result in more effective suppression of macrophage activation. This study provides new insights into the rational design of effective polymeric materials for anti-inflammatory therapies.

9.
Biomater Sci ; 4(1): 96-103, 2016 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-26553555

RESUMO

Our study reports a versatile immobilization method of Hemagglutinating Virus of Japan Envelope (HVJ-E) for the generation of viral-mimetic surfaces for hormone resistant prostate cancer cell isolation. HVJ-E has recently attracted much attention as a new type of therapeutic material because hormone resistant prostate cancer cells such as PC-3 cells possess the HVJ-E receptors, GD1a. The HVJ-E was successfully immobilized on precursor films composed of poly-l-lysine and alginic acid via layer-by-layer assembly without changing the biological activity. The monolayer adsorption of HVJ-E particles was confirmed by quartz crystal microbalance, fluorescent and atomic force microscopy analyses. By developing the HVJ-E coating with an affinity based cell trap within a glass capillary tube, we are able to gently isolate PC-3 from LN-Cap cells that represent adenocarcinoma without compromising cell viability. We achieved approximately 100% cell separation efficiency only by 60 seconds of flowing. We believe that the proposed technique offers significant promise for the creation of a hormone resistant cancer cell trap on a broad range of materials.


Assuntos
Biomimética/métodos , Lisina/química , Terapia Viral Oncolítica/métodos , Neoplasias da Próstata/química , Vírus Sendai/química , Linhagem Celular Tumoral , Separação Celular , Sobrevivência Celular , Humanos , Lisina/metabolismo , Masculino , Neoplasias da Próstata/patologia , Vírus Sendai/metabolismo
10.
Polymers (Basel) ; 8(11)2016 Oct 27.
Artigo em Inglês | MEDLINE | ID: mdl-30974657

RESUMO

The development of stimuli responsive polymers has progressed significantly with novel preparation techniques, which has allowed access to new materials with unique properties. Dual thermoresponsive (double temperature responsive) block copolymers are particularly of interest as their properties can change depending on the lower critical solution temperature (LCST) or upper critical solution temperature (UCST) of each segment. For instance, these block copolymers can change from being hydrophilic, to amphiphilic or to hydrophobic simply by changing the solution temperature without any additional chemicals and the block copolymers can change from being fully solubilized to self-assembled structures to macroscopic aggregation/precipitation. Based on the unique solution properties, these dual thermo-responsive block copolymers are expected to be suitable for biomedical applications. This review is divided into three parts; LCST-LCST types of block copolymers, UCST-LCST types of block copolymers, and their potential as biomedical applications.

11.
ACS Biomater Sci Eng ; 2(3): 446-453, 2016 Mar 14.
Artigo em Inglês | MEDLINE | ID: mdl-33429546

RESUMO

Although mechanostructural signals from the surrounding matrix have been known to regulate cell functions, the effects of substrate fluidity are poorly understood. Here, we demonstrate that the adhesion and morphology of cells are regulated by the fluidity on widely used biodegradable polymer substrates, rather than the substrate elasticity. We have designed cell culture films with different elasticity and fluidity using poly(ε-caprolactone-co-D,l-lactide) (CL-DLLA). The elasticity was successfully controlled by adjusting the amorphous-crystal phase transition temperature (Tm) of CL-DLLA without changing the surface wettability; i.e., the CL-DLLA displays more viscous (liquidlike) behavior at 37 °C with increasing DLLA contents. The fluidity was varied by chemically cross-linking the polymer networks. This CL-DLLA system was used to test the effect of variations in a substrate's fluidity on cell behavior. Differences were observed in adhesion, spreading and morphology of NIH 3T3 fibroblasts. Increasing the fluidity decreased cell spread area but enhanced the formation of spheroids. Although direct comparison of the elastic modulus between cross-linked and non-cross-linked samples are difficult, it was found that the substrate stiffness produced little changes in cell spread area, indicating that cells sense more dynamic nature of their surrounding environment. These findings will serve as the basis for new development of tissue engineering scaffolds and engineered stem cell niche as well as investigation of dynamic effects of mechanostructural stimuli on cell fate.

12.
Materials (Basel) ; 9(11)2016 Oct 25.
Artigo em Inglês | MEDLINE | ID: mdl-28773983

RESUMO

This work describes an intriguing strategy for the creation of arbitrarily shaped hydrogels utilizing a self-healing template (SHT). A SHT was loaded with a photo-crosslinkable monomer, PEG diacrylate (PEGDA), and then ultraviolet light (UV) crosslinked after first shaping. The SHT template was removed by simple washing with water, leaving behind the hydrogel in the desired physical shape. A hierarchical 3D structure such as "Matreshka" boxes were successfully prepared by simply repeating the "self-healing" and "photo-irradiation" processes. We have also explored the potential of the SHT system for the manipulation of cells.

13.
Biomater Sci ; 3(1): 152-62, 2015 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-26214198

RESUMO

A dual pH and glucose responsive boronic acid containing nanofiber was constructed for the reversible capture and release of lectins. The effects of surface groups and pH values on selective lectin capture were investigated by fluorescence microscopy. Compared to the pristine nanofibrous membrane, glucose and galactose functionalized nanofiber surfaces showed significantly higher capture of ConA and Jacalin, under alkaline conditions. On the other hand, treatment of the modified nanofibers with an acidic solution resulted in the detachment of both the lectins and glycopolymers from the nanofiber surface. As expected, once the glycopolymers are displaced, no lectins were adhered to the nanofiber surface under alkaline conditions. These functional nanofibers can therefore be easily modified and hence can be used for quick removal of selective proteins or toxins from the solution.


Assuntos
Ácidos Borônicos/química , Concanavalina A/química , Galactose/química , Glucose/química , Lectinas/química , Nanofibras/química , Lectinas de Plantas/química , Concentração de Íons de Hidrogênio , Soluções
14.
J Nanosci Nanotechnol ; 15(10): 7971-5, 2015 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-26726449

RESUMO

In this study, we present anti-cancer drug containing nanofiber-mediated gene delivery to treat liver cancer. Electro-spun nanofibers have big potential for local delivery and sustained release of therapeutic gene and drugs. We reported a temperature-responsive nanofibers mainly compounded by branched poly(ε-caprolactone) (PCL) macro-monomers and anti-cancer drug paclitaxel. The nanofiber could be administrated into liver tumors to dramatically hinder their growth and prevent their metastasis. As a result, paclitaxel encapsulated PCL (PTX/PCL) nanofibers with diameters of around several tens nanometers to 10 nm were successfully obtained by electro-spinning and observed in scanning electron microscopy (SEM). Nanoparticles composed of disulfide cross-linked branched PEI (ssPEI) and anti-cancer therapeutic gene miRNA-145 were complexed based on the electrostatic interaction and coated over the paclitaxel-loaded nanofiber. MicroRNA 145/ssPEI nanoparticles (MSNs) immobilized on the PTX/PCL nanofiber showed time-dependent sustained release of the microRNA for enhanced uptake in neighboring liver cancer cells without any noticeable cytotoxicity. From this study we are expecting a synergistic effect on the cancer cell suppression since we have combined the drug and gene delivery. This approach uses the nanofibers and nanoparticles together for the treatment of cancer and the detailed investigation in vitro and in vivo must be conducted for the practicality of this study. The polymer is biodegradable and the toxicity issues must be cleared by our approach.


Assuntos
Sistemas de Liberação de Medicamentos/métodos , Técnicas de Transferência de Genes , Terapia Genética/métodos , Neoplasias Hepáticas , Nanofibras/química , Poliésteres , Humanos , Neoplasias Hepáticas/genética , Neoplasias Hepáticas/terapia , MicroRNAs/genética , Paclitaxel/química , Paclitaxel/farmacologia , Poliésteres/química , Poliésteres/farmacologia
15.
Materials (Basel) ; 9(1)2015 Dec 26.
Artigo em Inglês | MEDLINE | ID: mdl-28787810

RESUMO

Inactivated Hemagglutinating Virus of Japan Envelope (HVJ-E) was immobilized on electrospun nanofibers of poly(ε-caprolactone) by layer-by-layer (LbL) assembly technique. The precursor LbL film was first constructed with poly-L-lysine and alginic acid via electrostatic interaction. Then the HVJ-E particles were immobilized on the cationic PLL outermost surface. The HVJ-E adsorption was confirmed by surface wettability test, scanning laser microscopy, scanning electron microscopy, and confocal laser microscopy. The immobilized HVJ-E particles were released from the nanofibers under physiological condition. In vitro cytotoxic assay demonstrated that the released HVJ-E from nanofibers induced cancer cell deaths. This surface immobilization technique is possible to perform on anti-cancer drug incorporated nanofibers that enables the fibers to show chemotherapy and immunotherapy simultaneously for an effective eradication of tumor cells in vivo.

16.
J Phys Chem B ; 119(6): 2323-9, 2015 Feb 12.
Artigo em Inglês | MEDLINE | ID: mdl-25211348

RESUMO

We demonstrate here a local- and remote-control of gel disintegration by using photoinduced proton transfer chemistry of photoacid generator (PAG). The gels were prepared by simply mixing two polymers, poly(N-isopropylacrylamide-co-5-methacrylamido-1,2-benzoxaborole) (P(NIPAAm-co-MAAmBO)) and poly(3-gluconamidopropyl methacrylamide) (PGAPMA) via the synergistic interaction of benzoxaborole and diol groups. The o-nitrobenzaldehyde (o-NBA) was then loaded into the gel as a PAG. The benzoxaborole-diol interaction was successfully disintegrated upon UV irradiation due to the local pH decrease inside the gel. When the gel was irradiated to a specific gel region, the synergistic interactions were disintegrated only at the exposed region. Of special interest is that the whole material eventually transitioned from gel to sol state, as the generated protons diffused gradually toward the nonilluminated region. The ability of the proposed gel-sol transition system via photoinduced proton diffusion may be beneficial for not only prompt pH changes within the gel but also the design of predictive and programmable devices for drug delivery.


Assuntos
Portadores de Fármacos/química , Processos Fotoquímicos , Polímeros/química , Prótons , Resinas Acrílicas/química , Benzeno/química , Liberação Controlada de Fármacos , Géis , Concentração de Íons de Hidrogênio , Análise Espaço-Temporal , Temperatura , Raios Ultravioleta
17.
Front Physiol ; 5: 210, 2014.
Artigo em Inglês | MEDLINE | ID: mdl-24917827

RESUMO

The vascularization of tissue engineered products represents a key issue in regenerative medicine which needs to be addressed before the translation of these protocols to the bedside can be foreseen. Here we propose a multistep procedure to prepare pre-vascularized three-dimensional (3D) cardiac bio-substitutes using dynamic cell cultures and highly porous biocompatible gelatin scaffolds. The strategy adopted exploits the peculiar differentiation potential of two distinct subsets of adult stem cells to obtain human vascularized 3D cardiac tissues. In the first step of the procedure, human mesenchymal stem cells (hMSCs) are seeded onto gelatin scaffolds to provide interconnected vessel-like structures, while human cardiomyocyte progenitor cells (hCMPCs) are stimulated in vitro to obtain their commitment toward the cardiac phenotype. The use of a modular bioreactor allows the perfusion of the whole scaffold, providing superior performance in terms of cardiac tissue maturation and cell survival. Both the cell culture on natural-derived polymers and the continuous medium perfusion of the scaffold led to the formation of a densely packaged proto-tissue composed of vascular-like and cardiac-like cells, which might complete maturation process and interconnect with native tissue upon in vivo implantation. In conclusion, the data obtained through the approach here proposed highlight the importance to provide stem cells with complementary signals in vitro able to resemble the complexity of cardiac microenvironment.

18.
Int J Nanomedicine ; 9 Suppl 1: 117-26, 2014.
Artigo em Inglês | MEDLINE | ID: mdl-24872707

RESUMO

We report here that the direction of aligned cells on nanopatterns can be tuned to a perpendicular direction without use of any biochemical reagents. This was enabled by shape-memory activation of nanopatterns that transition from a memorized temporal pattern to the original permanent pattern by heating. The thermally induced shape-memory nanopatterns were prepared by chemically crosslinking semi-crystalline poly(ε-caprolactone) (PCL) in a mold to show shape-memory effects over its melting temperature (Tm = 33°C). Permanent surface patterns were first generated by crosslinking the PCL macromonomers in a mold, and temporary surface patterns were then embossed onto the permanent patterns. The temporary surface patterns could be easily triggered to transition quickly to the permanent surface patterns by a 37°C heat treatment, while surface wettability was independent of temperature. To investigate the role of dynamic and reversible surface nanopatterns on cell alignment on the PCL films before and after a topographic transition, NIH 3T3 fibroblasts were seeded on fibronectin-coated PCL films with a temporary grooved topography (grooves with a height of 300 nm and width of 2 µm were spaced 9 µm apart). Interestingly, cells did not change their direction immediately after the surface transition. However, cell alignment was gradually lost with time, and finally cells realigned parallel to the permanent grooves that emerged. The addition of a cytoskeletal inhibitor prevented realignment. These results clearly indicate that cells can sense dynamic changes in the surrounding environments and spontaneously adapt to a new environment by remodeling their cytoskeleton. These findings will serve as the basis for new development of spatiotemporal tunable materials to direct cell fate.


Assuntos
Técnicas de Cultura de Células/métodos , Fenômenos Fisiológicos Celulares/fisiologia , Nanoestruturas/química , Nanotecnologia/métodos , Poliésteres/química , Animais , Camundongos , Células NIH 3T3 , Molhabilidade
19.
J Nanosci Nanotechnol ; 14(4): 3193-201, 2014 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-24734754

RESUMO

(Apo)ferritins are cage-shaped proteins which have recently received a great deal of attention because the inner cavity of the protein shell can be used as a size-restricted reaction field for the synthesis of nanomaterials. The biomineralization behavior and inorganic nanoparticle (NP) synthesis mechanism of (apo)ferritin in solution systems have been studied but the mineralization behavior of (apo)ferritin on the substrates has not yet been well studied. Here, we conducted quantitative and kinetic analyses of the mineralization behavior of immobilized (apo)ferritin on a polyelectrolyte multilayer (PEM) using quartz crystal microbalance (QCM), scanning electron microscopy (SEM), and X-ray photoelectron spectroscopy (XPS) techniques. We demonstrated that the (apo)ferritin immobilized on a substrate synthesizes a ferrihydrite core within the confines of the protein cage; similar to a solution dispersed system. In addition, we applied a ferritin/apoferritin blended monolayer to the study of iron mineralization and revealed that biomineralization in this system is spatially selective. It is important to understand the mineralization mechanisms for the synthesis of other functional NPs as this approach has potential for a broad range of magnetic, catalytic, and biomedical sensing applications.


Assuntos
Ferritinas/química , Proteínas Imobilizadas/química , Ferro/química , Minerais/química , Adsorção , Animais , Apoproteínas/química , Compostos Férricos/química , Cavalos , Microscopia Eletrônica de Varredura , Espectroscopia Fotoeletrônica , Técnicas de Microbalança de Cristal de Quartzo
20.
ACS Nano ; 8(3): 2033-47, 2014 Mar 25.
Artigo em Inglês | MEDLINE | ID: mdl-24483337

RESUMO

Stem cell responsiveness to extracellular matrix (ECM) composition and mechanical cues has been the subject of a number of investigations so far, yet the molecular mechanisms underlying stem cell mechano-biology still need full clarification. Here we demonstrate that the paralog proteins YAP and TAZ exert a crucial role in adult cardiac progenitor cell mechano-sensing and fate decision. Cardiac progenitors respond to dynamic modifications in substrate rigidity and nanopattern by promptly changing YAP/TAZ intracellular localization. We identify a novel activity of YAP and TAZ in the regulation of tubulogenesis in 3D environments and highlight a role for YAP/TAZ in cardiac progenitor proliferation and differentiation. Furthermore, we show that YAP/TAZ expression is triggered in the heart cells located at the infarct border zone. Our results suggest a fundamental role for the YAP/TAZ axis in the response of resident progenitor cells to the modifications in microenvironment nanostructure and mechanics, thereby contributing to the maintenance of myocardial homeostasis in the adult heart. These proteins are indicated as potential targets to control cardiac progenitor cell fate by materials design.


Assuntos
Proteínas Adaptadoras de Transdução de Sinal/metabolismo , Células-Tronco Adultas/citologia , Fenômenos Mecânicos , Miocárdio/citologia , Fosfoproteínas/metabolismo , Proteínas Serina-Treonina Quinases/metabolismo , Transdução de Sinais , Fatores de Transcrição/metabolismo , Aciltransferases , Adulto , Células-Tronco Adultas/metabolismo , Fenômenos Biomecânicos , Movimento Celular , Proliferação de Células , Matriz Extracelular/metabolismo , Via de Sinalização Hippo , Humanos , Espaço Intracelular/metabolismo , Infarto do Miocárdio/metabolismo , Infarto do Miocárdio/patologia , Nanoestruturas , Proteínas de Sinalização YAP
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...