Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 21
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Sci Rep ; 14(1): 2649, 2024 02 01.
Artigo em Inglês | MEDLINE | ID: mdl-38302478

RESUMO

"Yips" are involuntary movements that interfere with the automatic execution of sports movements. However, how the coordination among the various muscles necessary for sports movements is impaired in athletes with yips remains to be fully understood. This study aimed to assess whether muscle synergy analysis through non-negative matrix factorization (NMF) could identify impaired spatiotemporal muscle coordination in baseball players with throwing yips. Twenty-two college baseball players, including 12 with and 10 without yips symptoms participated in the study. Electromyographic activity was recorded from 13 ipsilateral upper extremity muscles during full-effort throwing. Muscle synergies were extracted through NMF. Cluster analysis was conducted to identify any common spatiotemporal patterns of muscle synergies in players with yips. Whether individual players with yips showed deviations in spatiotemporal patterns of muscle synergies compared with control players was also investigated. Four muscle synergies were extracted for each player, but none were specific to the yips group. However, a more detailed analysis of individual players revealed that two of the three players who presented dystonic symptoms during the experiment exhibited specific patterns that differed from those in control players. By contrast, each player whose symptoms were not reproduced during the experiment presented spatiotemporal patterns of muscle synergies similar to those of the control group. The results of this study indicate no common spatiotemporal pattern of muscle synergies specific to the yips group. Furthermore, these results suggest that the spatiotemporal pattern of muscle synergies in baseball throwing motion is not impaired in situations where symptoms are not reproduced even if the players have yips symptoms. However, muscle synergy analysis can identify the characteristics of muscle coordination of players who exhibit dystonic movements. These findings can be useful in developing personalized therapeutic strategies based on individual characteristics of yips symptoms.


Assuntos
Beisebol , Esportes , Humanos , Beisebol/fisiologia , Esportes/fisiologia , Músculo Esquelético , Movimento , Extremidade Superior
2.
PLoS One ; 18(11): e0292632, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-38032869

RESUMO

The motor imagery ability is closely related to an individual's motor performance in sports. However, whether motor imagery ability is diminished in athletes with yips, in whom motor performance is impaired, is unclear. Therefore, this cross-sectional study aimed to determine whether general motor imagery ability or vividness of motor imagery specific to throwing motion is impaired in baseball players with throwing yips. The study enrolled 114 college baseball players. They were classified into three groups: 33 players in the yips group, 26 in the recovered group (previously had yips symptoms but had resolved them), and 55 in the control group. They answered the revised version of the vividness of movement imagery questionnaire (VMIQ-2), which assesses general motor imagery ability. Furthermore, they completed a questionnaire that assesses both positive and negative motor imagery vividness specific to baseball throwing. In the former, they responded to their ability to vividly imagine accurately throwing a controlled ball, whereas in the latter, they responded to the vividness of their experience of negative motor imagery associated with baseball throwing, specifically the image of a wild throw. No significant difference in the VMIQ-2 was found among the three groups. While no significant difference in the vividness of positive motor imagery for ball throwing was found in either first-person visual or kinesthetic perspectives among the three groups, the yips group exhibited significantly higher vividness of negative motor imagery than the control group in both perspectives. These results indicate that negative motor imagery specific to baseball throwing may be associated with symptoms of yips. Therefore, interventions addressing psychological aspects, such as anxiety, which are potential causes of the generation of negative motor imagery, may be necessary to alleviate the symptoms of yips.


Assuntos
Beisebol , Esportes , Humanos , Estudos Transversais , Atletas , Imagens, Psicoterapia
3.
J Funct Morphol Kinesiol ; 8(1)2023 Jan 27.
Artigo em Inglês | MEDLINE | ID: mdl-36810499

RESUMO

This study aimed to evaluate the mechanism of progression involved in knee osteoarthritis (OA). We used the computed tomography-based finite element method (CT-FEM) of quantitative X-ray CT imaging to calculate and create a model of the load response phase, wherein the greatest burden is placed on the knee joint while walking. Weight gain was simulated by asking a male individual with a normal gait to carry sandbags on both shoulders. We developed a CT-FEM model that incorporated walking characteristics of individuals. Upon simulating changes owing to a weight gain of approximately 20%, the equivalent stress increased extensively in both medial and lower leg aspects of the femur and increased medio-posteriorly by approximately 230%. As the varus angle increased, stress on the surface of the femoral cartilage did not change significantly. However, the equivalent stress on the surface of the subchondral femur was distributed over a wider area, increasing by approximately 170% in the medio-posterior direction. The range of equivalent stress affecting the lower-leg end of the knee joint widened, and stress on the posterior medial side also increased significantly. It was reconfirmed that weight gain and varus enhancement increase knee-joint stress and cause the progression of OA.

4.
J Biomech ; 145: 111384, 2022 12.
Artigo em Inglês | MEDLINE | ID: mdl-36403527

RESUMO

Throwing is a fundamental human motor behavior that has evolved to aid hunting and defense against predators. In modern humans, accurate throwing is an important skill required in many sports. However, the spatiotemporal coordination of muscles during baseball throwing has not been fully elucidated. We herein aimed to identify the muscle synergies involved in baseball throwing and determine whether their spatiotemporal patterns are shared among individuals. Ten college baseball players participated in this study. Electromyographic activity was recorded from 13 ipsilateral upper limb muscles during throwing using full effort. Non-negative matrix factorization was used to extract the motor module composition and temporal activation patterns during baseball throwing, followed by k-means analysis to cluster the extracted motor modules based on their similarity. Four motor modules were extracted for each player. These were classified into four clusters (Clusters 1-4), each reaching the peak activity sequentially from the early cocking phase to ball release. Spatiotemporal interindividual similarity in the muscle synergy cluster comprising the muscles activated during the transition from early cocking to late cocking (Cluster 2) was significantly lower than that in the other clusters. There was no individual-specific muscle synergy. These results suggest that the skilled baseball throwing motion acquired through years of practice may consist of four basic muscle synergies that are common among individuals with some differences in their spatiotemporal patterns.


Assuntos
Beisebol , Esportes , Humanos , Masculino , Extremidade Superior , Músculos
5.
Front Physiol ; 13: 955912, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-36246135

RESUMO

The firing properties of the motor units are usually affected by the motor task. However, it has not been clarified whether the firing properties of the motor units of a specific muscle are different between postural and voluntary tasks. Therefore, this study investigated whether the recruitment and rate coding of the motor units differ between these two motor tasks. Thirteen healthy volunteers performed trapezoidal muscle contraction with a target value of 15% maximum electromyography (EMG) activity by voluntary left knee extension in the sitting position (voluntary task) and postural maintenance in the semi-squatting position (postural task) with a knee flexion angle of 30°. We obtained four channels of surface EMG activity during each task from left vastus lateralis muscle. We extracted the firing properties of individual motor units using the EMG decomposition algorithm. The recruitment threshold and motor unit action potential amplitude were significantly lower in the postural task than in the voluntary task, and conversely, the mean firing rate was significantly higher. These results were explained by the preferential recruitment of motor units with higher recruitment threshold and amplitude in the voluntary task, while motor units with lower recruitment threshold and higher firing rate were preferentially recruited in the postural task. Preferential activation of fatigue-resistant motor units in the postural task is a reasonable strategy as it allows for sustained postural maintenance. We provide the first evidence that motor unit firing properties are clearly different between postural and voluntary tasks, even at the same muscle activity level.

6.
PLoS One ; 17(7): e0270864, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-35881638

RESUMO

All healthcare professionals must understand information on a patient's biophysical functions, and it is important to educate professionals on how to use this information in an interprofessional team for diagnosis. However, there is little interprofessional education for students of medical technology and radiological science involved in biophysical function diagnosis. In the present study, we developed a case-based interprofessional learning tool for using biophysical information for diagnosis. The study examined the effects of a collaborative exercise workshop for healthcare professional students using the tool. Participants were 234 students from three healthcare professions (medical technology, radiological science, and physical therapy). They completed the Japanese version of the Readiness for Interprofessional Learning Scale before and after the workshops. The workshops incorporated digital materials that allowed students to examine the test results of a virtual patient, answer questions, and discuss their diagnoses and prognoses. For analysis, a two-way analysis of variance was performed on the total score on the Readiness for Interprofessional Learning Scale of the three departments, and the effectiveness of the workshop for the three departments was compared. Statistical analyses showed no interaction between time and department (p = 0.283). After the workshop, students from all three departments showed significant improvements in total scores on the Readiness for Interprofessional Learning Scale (p < 0.01) with medium to large effect sizes (r = 0.33-0.52). In the comparison between departments, there was a significant difference in the awareness levels of only medical technology and radiological science students before the workshop (p = 0.015). This study conducted case-based learning workshops with students from three departments, in which a patient's biophysical information was conveyed between occupational practices. The workshops improved the awareness of interprofessional education in students from all departments and revealed that interprofessional education is important for healthcare professions involved in biophysical function diagnosis.


Assuntos
Estudantes de Ciências da Saúde , Estudantes de Medicina , Atitude do Pessoal de Saúde , Comportamento Cooperativo , Humanos , Relações Interprofissionais , Aprendizagem , Modalidades de Fisioterapia , Inquéritos e Questionários , Tecnologia Radiológica
7.
Prog Rehabil Med ; 6: 20210037, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-34595360

RESUMO

BACKGROUND: Conventional rehabilitation is known to improve walking ability after stoke, but its effectiveness is often limited. Recent studies have shown that gait training combining conventional rehabilitation and robotic devices in stroke patients provides better results than conventional rehabilitation alone, suggesting that gait training with a robotic device may lead to further improvements in the walking ability recovered by conventional rehabilitation. Therefore, the aim of this report was to highlight the changes in kinematic and electromyographic data recorded during walking before and after gait training with the Honda Walking Assist Device® (HWAT) in a male patient whose walking speed had reached a recovery plateau under conventional rehabilitation. CASE: The patient was a 42-year-old man with severe hemiplegia caused by right putaminal hemorrhage. He underwent conventional rehabilitation for 20 weeks following the onset of stroke, after which his walking speed reached a recovery plateau. Subsequently, we added robotic rehabilitation using HWAT to his regular rehabilitation regimen, which resulted in improved step length symmetry and gait endurance. We also noted changes in muscle activity patterns during walking. DISCUSSION: HWAT further improved the walking ability of a patient who had recovered with conventional rehabilitation; this improvement was accompanied by changes in muscle activity patterns during walking. The improvement in gait endurance exceeded the smallest meaningful change in stroke patients, suggesting that this improvement represented a noticeable enhancement in the quality of life in relation to mobility in the community. Further clinical trials are needed to confirm the results of the present case study.

8.
Front Sports Act Living ; 3: 652792, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-34514382

RESUMO

The triggers of initial onset of yips symptoms can be broadly divided into psychological and non-psychological factors; however, a trigger-based classification of yips has not been established. This study aims to obtain insight into the prevention of yips by clarifying whether there are differences in symptoms and personality traits according to a trigger-based classification of yips in baseball players. A total of 107 college baseball players responded to a questionnaire assessing the presence or absence of yips and its symptoms. They were classified into the psychologically triggered yips group, the non-psychologically triggered yips group, and the non-yips group based on the presence or absence of yips and the triggers of its initial onset. Additionally, we compared whether personality traits examined by the NEO Five-Factor Inventory differed across these three groups. The psychologically triggered yips group had significantly higher agreeableness scores compared with the non-yips group, whereas the non-psychologically triggered yips group had significantly higher neuroticism scores compared with the psychologically triggered yips group. In the non-psychologically triggered yips group, there was a significantly higher frequency of throwing errors than in the psychologically triggered yips group, with a tendency to develop yips symptoms gradually. Since the trigger-based classification of yips is closely related to the strength of the yips symptoms and the players' personality traits, the results of this study contribute to a better understanding of the symptoms of yips and establishment of the prevention of yips. Large prospective studies are necessary to determine the causal relationship between a trigger-based classification of yips and the personality traits and symptoms of athletes with yips.

9.
Front Hum Neurosci ; 15: 674139, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-34239429

RESUMO

Finger flexor spasticity, which is commonly observed among patients with stroke, disrupts finger extension movement, consequently influencing not only upper limb function in daily life but also the outcomes of upper limb therapeutic exercise. Kinesthetic illusion induced by visual stimulation (KINVIS) has been proposed as a potential treatment for spasticity in patients with stroke. However, it remains unclear whether KINVIS intervention alone could improve finger flexor spasticity and finger extension movements without other intervention modalities. Therefore, the current study investigated the effects of a single KINVIS session on finger flexor spasticity, including its underlying neurophysiological mechanisms, and finger extension movements. To this end, 14 patients who experienced their first episode of stroke participated in this study. A computer screen placed over the patient's forearm displayed a pre-recorded mirror image video of the patient's non-paretic hand performing flexion-extension movements during KINVIS. The position and size of the artificial hand were adjusted appropriately to create a perception that the artificial hand was the patient's own. Before and after the 20-min intervention, Modified Ashworth Scale (MAS) scores and active range of finger extension movements of the paretic hand were determined. Accordingly, MAS scores and active metacarpophalangeal joint extension range of motion improved significantly after the intervention. Moreover, additional experimentation was performed using F-waves on eight patients whose spasticity was reduced by KINVIS to determine whether the same intervention also decreased spinal excitability. Our results showed no change in F-wave amplitude and persistence after the intervention. These results demonstrate the potential clinical significance of KINVIS as a novel intervention for improving finger flexor spasticity and extension movements, one of the most significant impairments among patients with stroke. The decrease in finger flexor spasticity following KINVIS may be attributed to neurophysiological changes not detectable by the F-wave, such as changes in presynaptic inhibition of Ia afferents. Further studies are certainly needed to determine the long-term effects of KINVIS on finger spasticity, as well as the neurophysiological mechanisms explaining the reduction in spasticity.

10.
Medicina (Kaunas) ; 57(6)2021 May 30.
Artigo em Inglês | MEDLINE | ID: mdl-34070851

RESUMO

Background and Objectives: Medial knee osteoarthritis is known to increase the mechanical load on the medial compartment of the knee joint during walking; however, it is not visually understood how much the mechanical load increases nor where in the medial compartment of the knee joint that load is focused. Therefore, we conducted a simulation study to determine the location and amount of the mechanical load in the medial compartment of the knee joint during the stance phase. Materials and Methods: Subject was a patient with right medial knee osteoarthritis. Computed tomography imaging and gait analysis were performed on subject. The CT image of the right knee was calculated using finite element analysis software. Since this software can set the flexion angle arbitrarily while maintaining the nonuniform material properties of the bone region, the model is constructed by matching the knee joint extension image obtained by CT to the loading response phase of gait analysis. The data of muscle exertion tension and vertical ground reaction force were inserted into the knee joint model created from the computed tomography-based finite element method, and the knee joint compressive stress was calculated. Results: With regard to compressive stress, the tibia showed high stress at 4.10 to 5.36 N/mm2. The femur showed high stress at 4.00 to 6.48 N/mm2. The joint compressive stress on the medial compartment of the knee joint was found to concentrate on the edge of the medial tibial condyle in the medial knee osteoarthritis subject. Conclusions: The measurement method of knee joint compressive stress by computed tomography-based finite element method can visually be a reliable method of measuring joint compressive stress in the medial knee osteoarthritis. This reflects the clinical findings because concentration of stress on the medial knee joint was observed at the medial osteophyte.


Assuntos
Osteoartrite do Joelho , Fenômenos Biomecânicos , Análise de Elementos Finitos , Marcha , Humanos , Articulação do Joelho/diagnóstico por imagem , Osteoartrite do Joelho/diagnóstico por imagem , Estresse Mecânico , Tíbia
11.
Geriatr Orthop Surg Rehabil ; 11: 2151459320956960, 2020.
Artigo em Inglês | MEDLINE | ID: mdl-33194254

RESUMO

INTRODUCTION: We aimed to report the clinical evaluation results of gait training with the Honda Walking Assist Device® (HWAT) in a patient with spinal cord injury (SCI). PATIENTS AND METHODS: A 63-year-old male with SCI (grade D on the American Spinal Injury Association Impairment Scale) underwent 20 HWAT sessions over 4 weeks. The self-selected walking speed (SWS), mean step length, cadence, 6-minute walking test (6MWT), Walking Index for SCI score, SCI Functional Ambulation Inventory gait score, American Spinal Injury Association Impairment Scale grade, neurological level, upper and lower extremity motor scores, modified Ashworth Scale, Penn Spasm Frequency Scale, and Spinal Cord Independence Measure version III were measured on admission, at the start of HWAT, at 2 and 4 weeks post-HWAT, and at discharge. Three-dimensional kinematic gait analysis and electromyographic assessments were performed before and after HWAT. RESULTS: The patient safely completed 20 HWAT sessions. We found improvements above the clinically meaningful difference in SWS and 6MWT as well as increased hip extension, ankle plantar- and dorsi-flexion range of motion and increased hip extensor, abductor, adductor, and ankle plantar flexor muscle activity. DISCUSSION: The SWS improved more markedly during the HWAT intervention, exceeding the minimal clinically important difference (0.10 to 0.15 m/s) in walking speed for people with SCI until discharge. Moreover, the 6MWT results at 2 weeks after the start of HWAT exceeded the cutoff value (472.5 m) for community ambulation and remained at a similar value at discharge. CONCLUSION: The walking distance (6MWT) and the walking speed (SWS) both demonstrated clinically important improvements following 20 treatment sessions which included HWAT.

12.
Geriatr Orthop Surg Rehabil ; 11: 2151459320966483, 2020.
Artigo em Inglês | MEDLINE | ID: mdl-33194256

RESUMO

The Honda Walking Assist® (HWA) is a light and easy wearable robot device for gait training, which assists patients' hip flexion and extension movements to guide hip joint movements during gait. However, the safety and feasibility of gait training with HWA after total knee arthroplasty (TKA) remains unclear. Thus, we aimed to evaluate the safety and feasibility of this gait training intervention using HWA for a patient who underwent TKA. The patient was a 76-year-old female who underwent a left TKA. Gait training using HWA was conducted for 18 sessions in total, from 1 to 5 weeks after TKA. To verify the recovery process after TKA surgery, knee function parameters and walking ability were measured at pre-TKA and 1, 2, 4, and 8 weeks after TKA. The gait patterns at self-selected walking speed (SWS) without HWA at pre- and 5 weeks after TKA were measured by using 3-dimensional (3D) gait analysis. The patient completed a total of 18 gait training interventions with HWA without any adverse complications such as knee pain and skin injury. The postoperative knee extension range of motion (ROM), knee extension torque, SWS, and maximum walking speed were remarkably improved. Regarding gait kinematic parameters, though this patient had a characteristic gait pattern with decreased knee ROM (called stiff knee gait) preoperatively, the knee flexion angle at 5 weeks after TKA showed knee flexion movement at loading response phase (LR; called double knee action), increased knee ROM during gait, and increased knee flexion angle at swing phase. In this case, the gait training using HWA was safe and feasible, and could be effective for the early improvement of gait ability, hip function, and gait pattern after TKA.

13.
Prog Rehabil Med ; 5: 20200025, 2020.
Artigo em Inglês | MEDLINE | ID: mdl-33134593

RESUMO

BACKGROUND: Sensory ataxia is a disorder of movement coordination caused by sensory deficits, especially in kinesthetic perception. Visual stimulus-induced kinesthetic illusion (KINVIS) is a method used to provide vivid kinesthetic perception without peripheral sensory input by using a video showing pre-recorded limb movements while the actual limb remains stationary. We examined the effects of KINVIS intervention in a patient with sensory ataxia. CASE: The patient was a 59-year-old man with a severe proprioceptive deficit caused by left thalamic hemorrhage. During KINVIS intervention, a computer screen displayed a pre-recorded mirror image video of the patient's unaffected hand performing flexion-extension movements as if it were attached to the patient's affected forearm. Kinematics during the flexion-extension movements of the paretic hand were recorded before and after 20-min interventions. Transcranial magnetic stimulation was applied to the affected and non-affected hemispheres. The amplitude of the motor-evoked potential (MEP) at rest was recorded for the muscles of both hands. After the intervention, the total trajectory length and the rectangular area bounding the trajectory of the index fingertip decreased. The MEP amplitude of the paretic hand increased, whereas the MEP amplitude of the non-paretic hand was unchanged. DISCUSSION: The changes in kinematics after the intervention suggested that KINVIS therapy may be a useful new intervention for sensory ataxia, a condition for which few effective treatments are currently available. Studies in larger numbers of patients are needed to clarify the mechanisms underlying this therapeutic effect.

14.
Hum Mov Sci ; 73: 102683, 2020 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-32949991

RESUMO

The acquisition of high-level motor skills beyond a "plateau" is important in sports training and rehabilitation. We aimed to investigate whether motor skills close to a plateau state can be improved further by performing motor imagery (MI) training while observing movements with difficulty levels optimized for individual motor skills. The subjects were divided randomly into four groups (n = 10 per group): the control group and three groups of MI combined with action observation (MI + AO) training with varying difficulty levels. The task was to rotate the two cork balls 20 times counterclockwise using the left hand. The subjects performed 30 and 10 successful trials of this task before and after MI + AO training, respectively. In the three training groups, MI training was performed while observing videos showing ball rotation movements adjusted to the same level, a moderately higher level, or a remarkably higher level of difficulty than that achieved by the individual subjects. The improvement rate of the ball rotation time after MI + AO training was significantly higher in the moderate-difficulty than in the control group and remarkably higher level of difficulty group. The other two MI + AO training groups did not differ significantly compared with the control group. The vividness of the MI during MI + AO training was significantly greater in the moderate-difficulty vs. the remarkably-high-difficulty group. These results suggest that performing MI training while observing movement at a level that is moderately higher than an individual's ability can promote improvements in motor skills (close to a plateau state) in rehabilitation and sports training. The vividness of MI may be an important index for determining the difficulty level of the movement to be observed during MI + AO training.


Assuntos
Mãos/fisiologia , Imaginação , Destreza Motora/fisiologia , Movimento , Reabilitação/métodos , Adolescente , Adulto , Feminino , Humanos , Masculino , Adulto Jovem
15.
PLoS One ; 15(7): e0236254, 2020.
Artigo em Inglês | MEDLINE | ID: mdl-32687520

RESUMO

Muscle activity changes quantitatively and temporally during the motor learning process. However, the association between variability in muscle electrical activity and the learning and performance of dexterous hand movements is not well understood. Therefore, we undertook this study to investigate the relationships between temporal and quantitative variabilities in muscle activity and the learning of motor skills. Thirty-eight healthy participants performed 30 trials of a task that measured the time taken to rotate two cork balls 20 times using their non-dominant hand. The electromyographic (EMG) activities of the abductor pollicis brevis (APB), first dorsal interosseous, and extensor digitorum (ED) muscles were recorded. Temporal and quantitative variabilities in the EMG activity were evaluated by calculating the coefficient of variation of the duration and area of EMG activation. As motor learning proceeded, the task was completed more quickly and the EMG variability decreased. For all three muscles, significant correlations were observed between individual participants' ball rotation time and EMG variability. Furthermore, significant positive correlations were observed between improvement in ball rotation time and reduction in EMG variability for the APB and ED muscles. These novel findings provide important insights regarding the relationships between temporal and quantitative variabilities in muscle activity and the learning of fine motor skills.


Assuntos
Variação Biológica Individual , Mãos/fisiologia , Aprendizagem/fisiologia , Destreza Motora/fisiologia , Músculo Esquelético/fisiologia , Eletromiografia , Feminino , Humanos , Masculino , Movimento/fisiologia , Contração Muscular/fisiologia , Fatores de Tempo , Adulto Jovem
16.
Medicina (Kaunas) ; 56(2)2020 Jan 29.
Artigo em Inglês | MEDLINE | ID: mdl-32013100

RESUMO

Background and objectives: There are no reports on articular stress distribution during walking based on any computed tomography (CT)-finite element model (CT-FEM). This study aimed to develop a calculation model of the load response (LR) phase, the most burdensome phase on the knee, during walking using the finite element method of quantitative CT images. Materials and Methods: The right knee of a 43-year-old man who had no history of osteoarthritis or surgeries of the knee was examined. An image of the knee was obtained using CT and the extension position image was converted to the flexion angle image in the LR phase. The bone was composed of heterogeneous materials. The ligaments were made of truss elements; therefore, they do not generate strain during expansion or contraction and do not affect the reaction force or pressure. The construction of the knee joint included material properties of the ligament, cartilage, and meniscus. The extensor and flexor muscles were calculated and set as the muscle exercise tension around the knee joint. Ground reaction force was vertically applied to suppress the rotation of the knee, and the thigh was restrained. Results: An FEM was constructed using a motion analyzer, floor reaction force meter, and muscle tractive force calculation. In a normal knee, the equivalent stress and joint contact reaction force in the LR phase were distributed over a wide area on the inner upper surface of the femur and tibia. Conclusions: We developed a calculation model in the LR phase of the knee joint during walking using a CT-FEM. Methods to evaluate the heteromorphic risk, mechanisms of transformation, prevention of knee osteoarthritis, and treatment may be developed using this model.


Assuntos
Artroplastia de Substituição/normas , Articulação do Joelho/cirurgia , Caminhada/fisiologia , Suporte de Carga/fisiologia , Adulto , Artroplastia de Substituição/efeitos adversos , Artroplastia de Substituição/métodos , Eletromiografia/métodos , Análise de Elementos Finitos , Análise da Marcha/métodos , Humanos , Articulação do Joelho/fisiopatologia , Masculino , Tomografia Computadorizada por Raios X/métodos
17.
Exp Brain Res ; 237(12): 3485-3492, 2019 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-31741000

RESUMO

Muscle synergy is important for simplifying functional movement, which constitutes spatiotemporal patterns of activity across muscles. To execute selective finger movements that are independent of synergistic movement patterns, we hypothesized that inhibitory neural activity is necessary to suppress enslaved finger movement caused by synergist muscles. To test this hypothesis, we focused on a pair of synergist muscles used in the hand opening movement, namely the index finger abductor and little finger abductor (abductor digiti minimi; ADM), and examined whether inhibitory neural activity in ADM occurs during selective index finger abduction/adduction movements and/or its imagery using transcranial magnetic stimulation and F-wave analysis. During the index finger adduction movement, background EMG activity, F-wave persistence, and motor evoked potential (MEP) amplitude in ADM were elevated. However, during the index finger abduction movement, ADM MEP amplitude remained unchanged despite increased background EMG activity and F-wave persistence. These results suggest that increased spinal excitability in ADM is counterbalanced by cortical-mediated inhibition only during selective index finger abduction movement. This assumption was further supported by the results of motor imagery experiments. Although F-wave persistence in ADM increased only during motor imagery of index finger abduction, ADM MEP amplitude during motor imagery of index finger abduction was significantly lower than that during adduction. Overall, our findings indicate that cortical-mediated inhibition contributes to the execution of selective finger movements that are independent of synergistic hand movement patterns.


Assuntos
Potencial Evocado Motor/fisiologia , Dedos/fisiologia , Imaginação/fisiologia , Atividade Motora/fisiologia , Córtex Motor/fisiologia , Músculo Esquelético/fisiologia , Condução Nervosa/fisiologia , Adulto , Eletromiografia , Humanos , Estimulação Magnética Transcraniana , Adulto Jovem
18.
Sci Rep ; 9(1): 13120, 2019 09 11.
Artigo em Inglês | MEDLINE | ID: mdl-31511567

RESUMO

Inhibitory neural control of antagonist muscle is one of the fundamental neural mechanism of coordinated human limb movement. Previous studies have revealed that motor execution (ME) and motor imagery (MI) share many common neural substrates; however, whether inhibitory neural activity occurs during MI remains unknown. In addition, recent studies have demonstrated that a combined MI and action observation (MI + AO) produces strong neurophysiological changes compared with MI or AO alone. Therefore, we investigated inhibitory changes in cortical and spinal excitability of the antagonist muscle during MI + AO and ME. Single-pulse transcranial magnetic stimulation (TMS) experiments revealed that corticospinal excitability of the antagonist muscle was decreased during MI + AO. Conversely, F-wave experiments showed that F-wave persistence of the antagonist muscle increased. Paired-pulse TMS experiment also demonstrated that short-interval intracortical inhibition (SICI) did not contribute to this inhibition. Therefore, cortical mediated inhibition, except for SICI, may be related to this inhibition. Conversely, such clear inhibition of the antagonist muscle was not observed during ME, presumably owing to the effects of muscle contraction to decelerate the movements and/or sensory input accompanying the joint movements. These findings provide important insights into the neurophysiological differences between MI + AO and ME.


Assuntos
Imaginação/fisiologia , Inibição Psicológica , Atividade Motora/fisiologia , Córtex Motor/fisiologia , Músculo Esquelético/fisiologia , Inibição Neural , Tratos Piramidais/fisiologia , Potencial Evocado Motor , Humanos , Estimulação Magnética Transcraniana
19.
Neurosci Lett ; 629: 196-201, 2016 08 26.
Artigo em Inglês | MEDLINE | ID: mdl-27418120

RESUMO

Surround inhibition (SI) is a neural mechanism to focus neuronal activity and facilitate selective motor execution (ME). The aim of the present study was to investigate whether SI is also generated during motor imagery (MI). Furthermore, we investigated whether the extent of SI during MI depends on the strength of SI during ME and/or vividness of MI. The extent of SI was examined during MI and ME of index finger flexion. Transcranial magnetic stimulation was applied at rest, during initiation of the movement (phasic phase) and during tonic muscle contraction of the index finger flexors. Motor evoked potentials (MEPs) were recorded from a surround muscle, abductor digiti minimi (ADM) and a synergistic muscle, the first dorsal interosseous muscle. The amplitude of ADM MEP was reduced during the phasic phase, which indicates that SI occurred during ME. In seven of 14 subjects, SI was also observed during MI, although this effect was not significant. There was a moderate correlation between the extent of SI during ME and MI. Furthermore, good imagers who experienced vivid MI during the MI task showed stronger SI than poor imagers. These results indicate that common neural substrates involved in SI during ME are at least in part recruited during MI. In clinical situations, the therapeutic use of MI to generate vivid MI may be one of effective tool to develop the strength of SI, which facilitate selective execution of desired movements.


Assuntos
Imaginação/fisiologia , Atividade Motora , Inibição Neural , Desempenho Psicomotor/fisiologia , Tratos Piramidais/fisiologia , Adulto , Eletromiografia , Potencial Evocado Motor , Feminino , Dedos/inervação , Dedos/fisiologia , Humanos , Masculino , Músculo Esquelético/inervação , Músculo Esquelético/fisiologia , Estimulação Magnética Transcraniana , Adulto Jovem
20.
J Neuroeng Rehabil ; 13: 36, 2016 Apr 15.
Artigo em Inglês | MEDLINE | ID: mdl-27079199

RESUMO

BACKGROUND: A kinesthetic illusion induced by a visual stimulus (KI) can produce vivid kinesthetic perception. During KI, corticospinal tract excitability increases and results in the activation of cerebral networks. Transcranial direct current stimulation (tDCS) is emerging as an alternative potential therapeutic modality for a variety of neurological and psychiatric conditions, such that identifying factors that enhance the magnitude and duration of tDCS effects is currently a topic of great scientific interest. This study aimed to establish whether the combination of tDCS with KI and sensory-motor imagery (MI) induces larger and longer-lasting effects on the excitability of corticomotor pathways in healthy Japanese subjects. METHODS: A total of 21 healthy male volunteers participated in this study. Four interventions were investigated in the first experiment: (1) anodal tDCS alone (tDCSa), (2) anodal tDCS with visually evoked kinesthetic illusion (tDCSa + KI), (3) anodal tDCS with motor imagery (tDCSa + MI), and (4) anodal tDCS with kinesthetic illusion and motor imagery (tDCSa + KIMI). In the second experiment, we added a sham tDCS intervention with kinesthetic illusion and motor imagery (sham + KIMI) as a control for the tDCSa + KIMI condition. Direct currents were applied to the right primary motor cortex. Corticospinal excitability was examined using transcranial magnetic stimulation of the area associated with the left first dorsal interosseous. RESULTS: In the first experiment, corticomotor excitability was sustained for at least 30 min following tDCSa + KIMI (p < 0.01). The effect of tDCSa + KIMI on corticomotor excitability was greater and longer-lasting than that achieved in all other conditions. In the second experiment, significant effects were not achieved following sham + KIMI. CONCLUSIONS: Our results suggest that tDCSa + KIMI has a greater therapeutic potential than tDCS alone for inducing higher excitability of the corticospinal tract. The observed effects may be related to sustained potentiation of resultant cerebral activity during combined KI, MI, and tDCSa.


Assuntos
Ilusões/fisiologia , Imaginação/fisiologia , Cinestesia/fisiologia , Tratos Piramidais/fisiologia , Estimulação Transcraniana por Corrente Contínua , Estimulação Magnética Transcraniana/métodos , Adulto , Potencial Evocado Motor/fisiologia , Humanos , Masculino , Córtex Motor/fisiologia , Estimulação Transcraniana por Corrente Contínua/métodos , Adulto Jovem
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...