Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 4 de 4
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Neurotoxicol Teratol ; 97: 107173, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-36893929

RESUMO

Attention-deficit hyperactivity disorder (ADHD) is a common human neurobehavioral disorder that usually begins in early childhood. Methylphenidate (MPH) has been used extensively as a first-line medicine for the treatment of ADHD. Since ADHD is often diagnosed in early childhood and can persist for the entire lifespan, individuals may take MPH for many years. Given that in the course of one's lifetime a person may stop taking MPH for periods of time, or may implement lifestyle changes that may reduce the need for MPH entirely, it is important to understand how cessation of MPH affects the adult brain following long-term use of MPH. The blockage of the dopamine transporter (DAT) and the norepinephrine transporter (NET) by MPH may help with ADHD symptoms by boosting monoamine levels in the synapse. In the present study, microPET/CT was used to investigate possible neurochemical alterations in the cerebral dopamine system after cessation of long-term MPH administration in nonhuman primates. MicroPET/CT images were collected from adult male rhesus monkeys 6 months after they stopped receiving vehicle or MPH following 12 years of chronic treatment. The neurochemical status of brain dopaminergic systems was evaluated using the vesicular monoamine transporter 2 (VMAT2) ligand [18F]-AV-133 and a tracer for imaging dopamine subtype 2 (D2) and serotonin subfamily 2 (5HT2) receptors, [18F]-FESP. Each tracer was injected intravenously and ten minutes later microPET/CT images were obtained over 120 min. The binding potential (BP) of each tracer in the striatum was obtained using the Logan reference tissue model with the cerebellar cortex time activity curve (TAC) as an input function. Brain metabolism was also evaluated using microPET/CT images of [18F]-FDG. [18F]-FDG was injected intravenously, and ten minutes later, microPET/CT images were obtained over 120 min. Radiolabeled tracer accumulation in regions of interest (ROIs) in the prefrontal cortex, temporal cortex, striatum, and cerebellum were converted into standard uptake values (SUVs). Compared to the vehicle control group, the BPs of [18F] AV-133 and [18F]-FESP in the striatum were not significantly altered in MPH treated groups. Additionally, no significant differences were detected in the SUVs of [18F]-FDG in the MPH treated group compared with control. This study demonstrates that 6 months after cessation of long-term, chronic MPH treatment, there are no significant neurochemical or neural metabolic changes in the central nervous system (CNS) of non-human primates (NHPs) and suggests that microPET imaging is helpful in assessing the status of biomarkers of neurochemical processes linked to chronic CNS drug exposure. (Supported by NCTR).


Assuntos
Transtorno do Deficit de Atenção com Hiperatividade , Estimulantes do Sistema Nervoso Central , Metilfenidato , Pré-Escolar , Adulto , Animais , Masculino , Humanos , Dopamina , Fluordesoxiglucose F18/uso terapêutico , Transtorno do Deficit de Atenção com Hiperatividade/tratamento farmacológico
2.
Neurotoxicol Teratol ; 87: 107017, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-34265415

RESUMO

Methylphenidate (MPH) is a psychostimulant approved by the FDA to treatment Attention-Deficit Hyperactivity Disorder (ADHD). MPH is believed to exert its pharmacological effects via preferential blockade of the dopamine transporter (DAT) and the norepinephrine transporter (NET), resulting in increased monoamine levels in the synapse. We used a quantitative non-invasive PET imaging technique to study the effects of long-term methylphenidate use on the central nervous system (CNS). We conducted microPET/CT scans on young adult male rhesus monkeys to monitor changes in the dopaminergic system. We used [18F] AV-133, a ligand for the vesicular monoamine transporter 2 (VMAT2), and [18F]FESP a ligand for the D2 and 5HT2 receptors. In this study we evaluated the effects if chronic MPH treatment in the nonhuman primates (NHP). Two-year-old, male rhesus monkeys were orally administered MPH diluted in the electrolyte replenisher, Prang, twice a day, five days per week (M-F) over an 8-year period. The dose of MPH was gradually escalated from 0.15 mg/kg initially to 2.5 mg/kg/dose for the low dose group, and 1.5 mg/kg to 12.5 mg/kg/dose for the high dose group (Rodriguez et al., 2010). Scans were performed on Mondays, about 60 h after their last treatment, to avoid the acute effects of MPH. Tracers were injected intravenously ten minutes before microPET/CT scanning. Sessions lasted about 120 min. The Logan reference tissue model was used to determine the Binding Potential (BP) of each tracer in the striatum with the cerebellar cortex time activity curve as an input function. Both MP treatment groups had a lower [18F] AV-133 BP, although this failed to reach statistical significance. MPH treatment did not have a significant effect on The BP of [18F] FESP in the striatum. Long-term administration of MPH did not significant change any of the marker of monoamine function used here. These data suggest that, despite lingering concerns, long-term use of methylphenidate does not negatively impact monoamine function. This study also demonstrates that microPET imaging can distinguish differences in binding potentials of a variety of radiotracers in the CNS of NHPs. This approach may provide minimally-invasive biomarkers of neurochemical processes associated with chronic exposure to CNS medications. (Supported by NCTR).


Assuntos
Encéfalo/efeitos dos fármacos , Proteínas da Membrana Plasmática de Transporte de Dopamina/efeitos dos fármacos , Metilfenidato/farmacologia , Fatores de Tempo , Animais , Estimulantes do Sistema Nervoso Central/administração & dosagem , Estimulantes do Sistema Nervoso Central/farmacologia , Dopamina/metabolismo , Proteínas da Membrana Plasmática de Transporte de Dopamina/metabolismo , Macaca mulatta , Metilfenidato/administração & dosagem , Proteínas da Membrana Plasmática de Transporte de Norepinefrina/metabolismo , Proteínas da Membrana Plasmática de Transporte de Norepinefrina/farmacologia , Tomografia por Emissão de Pósitrons/métodos , Tomografia Computadorizada por Raios X/métodos , Proteínas Vesiculares de Transporte de Monoamina/efeitos dos fármacos , Proteínas Vesiculares de Transporte de Monoamina/metabolismo
3.
Neurotoxicol Teratol ; 56: 68-74, 2016.
Artigo em Inglês | MEDLINE | ID: mdl-27307090

RESUMO

Methylphenidate (MPH) is a psychostimulant commonly used for the treatment of Attention-Deficit Hyperactivity Disorder (ADHD). Since the long-term effects of this drug on the central nervous system (CNS) are not well understood, we conducted microPET/CT scans on young adult male rhesus monkeys (n=4/group) to gather information on brain metabolism using the uptake of [(18)F]Fluoro-2-deoxy-2-d-glucose (FDG) as a marker. Approximately two-year old, male rhesus monkeys were treated orally with MPH twice per day, five days per week (M-F) over a 6-year period. Subjects received MPH at either 2.5 or 12.5mg/kg/dose or vehicle (Prang). To minimize the acute effects of MPH on FDG uptake, microPET/CT scans were scheduled on Mondays before their first daily dosing of the week (approximately 68h since their last treatment). FDG (370±8.88MBq) was injected intravenously and 30min later microPET/CT images were obtained over 60min. Radiolabeled tracer accumulation in regions of interest (ROIs) in the prefrontal cortex, temporal cortex, striatum and cerebellum were converted into Standard Uptake Values (SUVs). Compared to the control group, the uptake of FDG in the cerebellum was significantly decreased in both the low and high dose groups. These preliminary data demonstrate that microPET imaging is capable of distinguishing differences in retention of FDG in the brains of NHPs treated chronically with MPH and suggests that this approach may provide a minimally invasive biomarker for exploring the effects of chronic MPH treatment on aspects of brain function.


Assuntos
Encéfalo/efeitos dos fármacos , Encéfalo/metabolismo , Estimulantes do Sistema Nervoso Central/administração & dosagem , Metilfenidato/administração & dosagem , Tomografia por Emissão de Pósitrons , Tomografia Computadorizada por Raios X , Animais , Fluordesoxiglucose F18/metabolismo , Macaca mulatta , Masculino
4.
J Neural Transm (Vienna) ; 118(2): 203-11, 2011 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-20963452

RESUMO

Recent reports indicate that 6-12 h of ketamine anesthesia can trigger neuronal apoptosis in postnatal day (PND) 7 rats. In vitro, ex vivo, and confocal fluorescent imaging studies suggest that dansyl compounds can accumulate within the cytoplasm of the apoptotic cell. High-resolution positron emission tomography (microPET) imaging has been proposed as a minimally invasive method for detecting apoptosis in the rat brain. Compared with [(18)F]-labeled annexin V, which binds to externalized phosphatidylserine (PS) on the outer membrane of apoptotic cells, intracellular uptake of the dansylhydrazone of p-fluorobenzaldehyde (DFNSH) may lead to improved target-to-background contrast ratios. In this study, the effect of ketamine on the uptake and retention of [(18)F]-DFNSH in the rat brain was investigated using microPET imaging. On PND 7, rat pups in the experimental group were exposed, at 2-h intervals, to six subcutaneous injections of ketamine (20 mg/kg) and control rat pups received six injections of saline. On PND 35, [(18)F]-DFNSH (37 MBq) was injected into the tail vein of rats and microPET images were obtained over 2 h following the injection. Radiolabeled tracer accumulation in the region of interest (ROI) in the frontal cortex was converted into standard uptake values (SUVs). The radiotracer was quickly distributed into the brains of both ketamine- and saline-treated rats. Compared with the control group, the uptake of [(18)F]-DFNSH was significantly increased in the ROI, frontal cortex area of ketamine-treated rats. In addition, the wash-out duration of the tracer was prolonged in the ketamine-treated animals. This study demonstrates that microPET imaging is capable of distinguishing differences in retention of [(18)F]-DFNSH in ROI and suggests that this compound may serve as a minimally invasive biomarker of neuronal apoptosis in rodents.


Assuntos
Anestésicos Dissociativos/toxicidade , Benzaldeídos/farmacocinética , Encéfalo/diagnóstico por imagem , Ketamina/toxicidade , Neurônios/patologia , Tomografia por Emissão de Pósitrons/métodos , Animais , Apoptose/efeitos dos fármacos , Encéfalo/efeitos dos fármacos , Encéfalo/metabolismo , Ensaio de Imunoadsorção Enzimática , Feminino , Radioisótopos de Flúor/farmacocinética , Processamento de Imagem Assistida por Computador , Masculino , Neurônios/efeitos dos fármacos , Compostos Radiofarmacêuticos/farmacocinética , Ratos , Ratos Sprague-Dawley , Distribuição Tecidual
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA