Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 8 de 8
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Front Cell Infect Microbiol ; 14: 1408451, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-38828264

RESUMO

Recent studies indicate that human spleen contains over 95% of the total parasite biomass during chronic asymptomatic infections caused by Plasmodium vivax. Previous studies have demonstrated that extracellular vesicles (EVs) secreted from infected reticulocytes facilitate binding to human spleen fibroblasts (hSFs) and identified parasite genes whose expression was dependent on an intact spleen. Here, we characterize the P. vivax spleen-dependent hypothetical gene (PVX_114580). Using CRISPR/Cas9, PVX_114580 was integrated into P. falciparum 3D7 genome and expressed during asexual stages. Immunofluorescence analysis demonstrated that the protein, which we named P. vivax Spleen-Dependent Protein 1 (PvSDP1), was located at the surface of infected red blood cells in the transgenic line and this localization was later confirmed in natural infections. Plasma-derived EVs from P. vivax-infected individuals (PvEVs) significantly increased cytoadherence of 3D7_PvSDP1 transgenic line to hSFs and this binding was inhibited by anti-PvSDP1 antibodies. Single-cell RNAseq of PvEVs-treated hSFs revealed increased expression of adhesion-related genes. These findings demonstrate the importance of parasite spleen-dependent genes and EVs from natural infections in the formation of intrasplenic niches in P. vivax, a major challenge for malaria elimination.


Assuntos
Vesículas Extracelulares , Malária Vivax , Plasmodium vivax , Proteínas de Protozoários , Baço , Vesículas Extracelulares/metabolismo , Plasmodium vivax/genética , Plasmodium vivax/metabolismo , Humanos , Baço/metabolismo , Baço/parasitologia , Malária Vivax/parasitologia , Proteínas de Protozoários/metabolismo , Proteínas de Protozoários/genética , Eritrócitos/parasitologia , Eritrócitos/metabolismo , Fibroblastos/parasitologia , Fibroblastos/metabolismo , Plasmodium falciparum/genética , Plasmodium falciparum/metabolismo , Plasmodium falciparum/fisiologia , Adesão Celular , Interações Hospedeiro-Parasita
2.
J Innate Immun ; : 1-20, 2022 Nov 15.
Artigo em Inglês | MEDLINE | ID: mdl-36380629

RESUMO

Melanoma differentiation-associated protein 5 (MDA5) induces type I interferons (IFNs) after the recognition of viral RNA. In addition, gain-of-function mutations in the interferon induced with helicase C domain 1 (IFIH1) gene, which encodes MDA5, lead to type I interferonopathies. Here, we show that Mda5 is highly expressed in murine macrophages and is regulated by pro-inflammatory stimuli such as the cytokines IFN-α and IFN-γ, the TLR ligand LPS, and a mimic of dsRNA, poly(I:C). Mda5 induction is mediated through the production of reactive oxygen species. The induction by IFN-α or LPS occurs at the transcriptional level since the Mda5 mRNA half-life before and after induction is very stable. Interestingly, STAT1 is required for Mda5 induction by IFN-α, LPS, or poly(I:C). The time course of induction of at least 3 h and the need for protein synthesis indicate that Mda5 requires an intermediate protein for transcription. In transient transfection experiments, we found that a 105-bp fragment of this gene, between -1153 and -1258 bp relative to the transcription start site, is required for transcription. In this specific region, we observed a sequence containing an IRF-binding motif, which, when mutated, abolishes the induction of Mda5. This sequence is strongly conserved in the IFIH1 promoters of eutherian mammals and in other distant species. Kinetic experiments, chromatin immunoprecipitation assays, and gene-silencing experiments revealed that IRF1 is required for induction of Mda5 expression.

3.
Mol Cell Proteomics ; 21(10): 100406, 2022 10.
Artigo em Inglês | MEDLINE | ID: mdl-36030044

RESUMO

Latent liver stages termed hypnozoites cause relapsing Plasmodium vivax malaria infection and represent a major obstacle in the goal of malaria elimination. Hypnozoites are clinically undetectable, and presently, there are no biomarkers of this persistent parasite reservoir in the human liver. Here, we have identified parasite and human proteins associated with extracellular vesicles (EVs) secreted from in vivo infections exclusively containing hypnozoites. We used P. vivax-infected human liver-chimeric (huHEP) FRG KO mice treated with the schizonticidal experimental drug MMV048 as hypnozoite infection model. Immunofluorescence-based quantification of P. vivax liver forms showed that MMV048 removed schizonts from chimeric mice livers. Proteomic analysis of EVs derived from FRG huHEP mice showed that human EV cargo from infected FRG huHEP mice contain inflammation markers associated with active schizont replication and identified 66 P. vivax proteins. To identify hypnozoite-specific proteins associated with EVs, we mined the proteome data from MMV048-treated mice and performed an analysis involving intragroup and intergroup comparisons across all experimental conditions followed by a peptide compatibility analysis with predicted spectra to warrant robust identification. Only one protein fulfilled this stringent top-down selection, a putative filamin domain-containing protein. This study sets the stage to unveil biological features of human liver infections and identify biomarkers of hypnozoite infection associated with EVs.


Assuntos
Vesículas Extracelulares , Malária Vivax , Parasitos , Humanos , Camundongos , Animais , Malária Vivax/tratamento farmacológico , Malária Vivax/parasitologia , Plasmodium vivax , Proteômica , Proteoma , Filaminas , Fígado , Biomarcadores , Espectrometria de Massas
4.
Front Cell Infect Microbiol ; 12: 920204, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-35873153

RESUMO

Plasmodium vivax is the most widely distributed human malaria parasite representing 36.3% of disease burden in the South-East Asia region and the most predominant species in the region of the Americas. Recent estimates indicate that 3.3 billion of people are under risk of infection with circa 7 million clinical cases reported each year. This burden is certainly underestimated as the vast majority of chronic infections are asymptomatic. For centuries, it has been widely accepted that the only source of cryptic parasites is the liver dormant stages known as hypnozoites. However, recent evidence indicates that niches outside the liver, in particular in the spleen and the bone marrow, can represent a major source of cryptic chronic erythrocytic infections. The origin of such chronic infections is highly controversial as many key knowledge gaps remain unanswered. Yet, as parasites in these niches seem to be sheltered from immune response and antimalarial drugs, research on this area should be reinforced if elimination of malaria is to be achieved. Due to ethical and technical considerations, working with the liver, bone marrow and spleen from natural infections is very difficult. Recent advances in the development of humanized mouse models and organs-on-a-chip models, offer novel technological frontiers to study human diseases, vaccine validation and drug discovery. Here, we review current data of these frontier technologies in malaria, highlighting major challenges ahead to study P. vivax cryptic niches, which perpetuate transmission and burden.


Assuntos
Antimaláricos , Malária Vivax , Malária , Animais , Medula Óssea/parasitologia , Modelos Animais de Doenças , Humanos , Malária/tratamento farmacológico , Malária Vivax/prevenção & controle , Camundongos , Plasmodium vivax
5.
Parasitol Int ; 87: 102527, 2022 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-34896615

RESUMO

Human malaria caused by Plasmodium vivax infection (vivax malaria) is a major global health issue. It is the most geographically widespread form of the disease, accounting for 7 million annual clinical cases, the majority of cases in America and Asia and an estimation of over 2.5 billion people living under risk of infection. The general perception towards vivax malaria has shifted recently, following a series of reports, from being viewed as a benign infection to the recognition of its potential for more severe manifestations including fatal cases. However, the underlying pathogenic mechanisms of vivax malaria remain largely unresolved. Asymptomatic carriers of malaria parasites are a major challenge for malaria elimination. In the case of P. vivax, it has been widely accepted that the only source of cryptic parasites is hypnozoite dormant stages. Here, we will review new evidence indicating that cryptic erythrocytic niches outside the liver, in particular in the spleen and bone marrow, can represent a major source of asymptomatic infections. The origin of such parasites is being controversial and many key gaps in the knowledge of such infections remain unanswered. Yet, as parasites in these niches seem to be sheltered from immune response and antimalarial drugs, research on this area should be reinforced if elimination of malaria is to be achieved. Last, we will glimpse into the role of reticulocyte-derived exosomes, extracellular vesicles of endocytic origin, as intercellular communicators likely involved in the formation of such cryptic erythrocytic infections.


Assuntos
Medula Óssea/parasitologia , Eritrócitos/parasitologia , Malária Vivax/sangue , Malária Vivax/prevenção & controle , Baço/parasitologia , Animais , Antimaláricos/uso terapêutico , Exossomos/parasitologia , Humanos , Malária Vivax/tratamento farmacológico , Malária Vivax/epidemiologia , Plasmodium vivax , Reticulócitos/parasitologia , Reticulócitos/ultraestrutura
6.
Front Cell Infect Microbiol ; 11: 596104, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-33732657

RESUMO

The spleen is a secondary lymphoid organ with multiple functions including the removal of senescent red blood cells and the coordination of immune responses against blood-borne pathogens, such as malaria parasites. Despite the major role of the spleen, the study of its function in humans is limited by ethical implications to access human tissues. Here, we employed multiparameter flow cytometry combined with cell purification techniques to determine human spleen cell populations from transplantation donors. Spleen immuno-phenotyping showed that CD45+ cells included B (30%), CD4+ T (16%), CD8+ T (10%), NK (6%) and NKT (2%) lymphocytes. Myeloid cells comprised neutrophils (16%), monocytes (2%) and DCs (0.3%). Erythrocytes represented 70%, reticulocytes 0.7% and hematopoietic stem cells 0.02%. Extracellular vesicles (EVs) are membrane-bound nanoparticles involved in intercellular communication and secreted by almost all cell types. EVs play several roles in malaria that range from modulation of immune responses to vascular alterations. To investigate interactions of plasma-derived EVs from Plasmodium vivax infected patients (PvEVs) with human spleen cells, we used size-exclusion chromatography (SEC) to separate EVs from the bulk of soluble plasma proteins and stained isolated EVs with fluorescent lipophilic dyes. The integrated cellular analysis of the human spleen and the methodology employed here allowed in vitro interaction studies of human spleen cells and EVs that showed an increased proportion of T cells (CD4+ 3 fold and CD8+ 4 fold), monocytes (1.51 fold), B cells (2.3 fold) and erythrocytes (3 fold) interacting with PvEVs as compared to plasma-derived EVs from healthy volunteers (hEVs). Future functional studies of these interactions can contribute to unveil pathophysiological processes involving the spleen in vivax malaria.


Assuntos
Vesículas Extracelulares , Malária Vivax , Citometria de Fluxo , Humanos , Plasmodium vivax , Baço
7.
Front Cell Infect Microbiol ; 11: 811390, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-35141172

RESUMO

Plasmodium vivax is the most widely distributed human malaria parasite with 7 million annual clinical cases and 2.5 billion people living under risk of infection. There is an urgent need to discover new antigens for vaccination as only two vaccine candidates are currently in clinical trials. Extracellular vesicles (EVs) are small membrane-bound vesicles involved in intercellular communication and initially described in reticulocytes, the host cell of P. vivax, as a selective disposal mechanism of the transferrin receptor (CD71) in the maturation of reticulocytes to erythrocytes. We have recently reported the proteomics identification of P. vivax proteins associated to circulating EVs in P. vivax patients using size exclusion chromatography followed by mass spectrometry (MS). Parasite proteins were detected in only two out of ten patients. To increase the MS signal, we have implemented the direct immuno-affinity capture (DIC) technique to enrich in EVs derived from CD71-expressing cells. Remarkably, we identified parasite proteins in all patients totaling 48 proteins and including several previously identified P. vivax vaccine candidate antigens (MSP1, MSP3, MSP7, MSP9, Serine-repeat antigen 1, and HSP70) as well as membrane, cytosolic and exported proteins. Notably, a member of the Plasmodium helical interspersed sub-telomeric (PHIST-c) family and a member of the Plasmodium exported proteins, were detected in five out of six analyzed patients. Humoral immune response analysis using sera from vivax patients confirmed the antigenicity of the PHIST-c protein. Collectively, we showed that enrichment of EVs by CD71-DIC from plasma of patients, allows a robust identification of P. vivax immunogenic proteins. This study represents a significant advance in identifying new antigens for vaccination against this human malaria parasite.


Assuntos
Vesículas Extracelulares , Malária Vivax , Anticorpos Antiprotozoários , Antígenos de Protozoários , Eritrócitos/parasitologia , Vesículas Extracelulares/metabolismo , Humanos , Malária Vivax/parasitologia , Plasmodium vivax , Proteínas de Protozoários/metabolismo , Reticulócitos/metabolismo , Reticulócitos/parasitologia
8.
Nat Commun ; 11(1): 2761, 2020 06 02.
Artigo em Inglês | MEDLINE | ID: mdl-32487994

RESUMO

Plasmodium vivax is the most widely distributed human malaria parasite. Previous studies have shown that circulating microparticles during P. vivax acute attacks are indirectly associated with severity. Extracellular vesicles (EVs) are therefore major components of circulating plasma holding insights into pathological processes. Here, we demonstrate that plasma-derived EVs from Plasmodium vivax patients (PvEVs) are preferentially uptaken by human spleen fibroblasts (hSFs) as compared to the uptake of EVs from healthy individuals. Moreover, this uptake induces specific upregulation of ICAM-1 associated with the translocation of NF-kB to the nucleus. After this uptake, P. vivax-infected reticulocytes obtained from patients show specific adhesion properties to hSFs, reversed by inhibiting NF-kB translocation to the nucleus. Together, these data provide physiological EV-based insights into the mechanisms of human malaria pathology and support the existence of P. vivax-adherent parasite subpopulations in the microvasculature of the human spleen.


Assuntos
Vesículas Extracelulares/metabolismo , Fibroblastos/metabolismo , NF-kappa B/metabolismo , Plasma , Plasmodium vivax/fisiologia , Reticulócitos/metabolismo , Baço/metabolismo , Animais , Adesão Celular , Micropartículas Derivadas de Células , Modelos Animais de Doenças , Vesículas Extracelulares/parasitologia , Fibroblastos/patologia , Interações Hospedeiro-Parasita/fisiologia , Humanos , Molécula 1 de Adesão Intercelular/metabolismo , Malária Vivax/parasitologia , Masculino , Camundongos , Camundongos Endogâmicos C57BL , Microvasos/parasitologia , Proteômica , Reticulócitos/parasitologia , Baço/patologia
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...