Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 4 de 4
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Anat Rec (Hoboken) ; 306(1): 176-186, 2023 01.
Artigo em Inglês | MEDLINE | ID: mdl-35684983

RESUMO

Oxygen (O2 ) rates in the oviduct are essential to human and animal reproduction. These rates are regulated by the activity of hypoxia markers such as the hypoxia-inducible factors (HIFs), the glucose transporters (GLUT), and the carbonic anhydrase (CA). In the porcine model, scarce studies have been reported regarding these markers and their effects in reproduction are unknown. The objective was to characterize the immunolocalization of HIF-2α, GLUT1, and CAIX in porcine oviducts throughout the estrous cycle. Oviducts (ampulla and isthmus) of adult sows (n = 45) were collected for histological and immunohistochemical analysis with HIF-2α, GLUT1, and CAIX markers. The percentage of immunopositive area was quantified, and the differences among phases of the estrous cycle were analyzed (folicular, early luteal, and late luteal). The three markers showed epithelial presence mainly. Significantly lower expression of HIF-2α was found in the luteal phases, especially in the isthmus. GLUT1 expression did not change throughout the estrous cycle, but differences were found between the ampulla and isthmus. CAIX expression showed the highest, with a significant downward trend throughout estrous cycle. The ubiquitous expression of hypoxia markers shows the porcine oviduct physiology in relation to O2 . The differential expression of HIF-2α, GLUT1, and CAIX in different subcompartments of the oviduct throughout the estrous cycle contributes to improve the knowledge of the cell physiology of the oviduct, which can be useful in fertilization studies.


Assuntos
Ciclo Estral , Hipóxia , Humanos , Suínos , Animais , Feminino , Fatores de Transcrição Hélice-Alça-Hélice Básicos
2.
Sci Total Environ ; 862: 160573, 2023 Mar 01.
Artigo em Inglês | MEDLINE | ID: mdl-36460114

RESUMO

Wastewater-based epidemiology is an economical and effective tool for monitoring the COVID-19 pandemic. In this study we proposed sampling campaigns that addressed spatial-temporal trends within a metropolitan area. This is a local study of detection and quantification of SARS-CoV-2 in wastewater during the onset, rise, and decline of COVID-19 cases in Salta city (Argentina) over the course of a twenty-one-week period (13 Aug to 30 Dec) in 2020. Wastewater samples were gathered from 13 sewer manholes specific to each sewershed catchment, prior to convergence or mixing with other sewer lines, resulting in samples specific to individual catchments with defined areas. The 13 sewershed catchments selected comprise 118,832 connections to the network throughout the city, representing 84.7 % (534,747 individuals) of the total population. The number of COVID19-related exposure and symptoms cases in each area were registered using an application developed for smartphones by the provincial government. Geographical coordinates provided by the devices were recorded, and consequently, it was possible to geolocalise all app-cases and track them down to which of the 13 sampling catchments belonged. RNA fragments of SARS-CoV-2 were detected in every site since the beginning of the monitoring, anticipating viral circulation in the population. Over the course of the 21-week study, the concentrations of SARS-CoV-2 ranged between 1.77 × 104 and 4.35 × 107 genome copies/L. There was a correspondence with the highest viral load in wastewater and the peak number of cases reported by the app for each catchment. The associations were evaluated with correlation analysis. The viral loads of SARS-CoV-2 in wastewater were a feasible means to describe the trends of COVID-19 infections. Surveillance at sewershed scale, provided reliable and strategic information that could be used by local health stakeholders to manage the COVID-19 pandemic.


Assuntos
COVID-19 , SARS-CoV-2 , Humanos , COVID-19/epidemiologia , Pandemias , Argentina/epidemiologia , Águas Residuárias
3.
Front Plant Sci ; 13: 986247, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-36161011

RESUMO

The common bean (Phaseolus vulgaris L.) is the most important grain legume in the human diet, mainly in Africa and Latin America. Argentina is one of the five major producers of the common bean in the world, and the main cultivation areas are concentrated in the northwestern provinces of this country. Crop production of the common bean is often affected by biotic factors like some endemic fungal diseases, which exert a major economic impact on the region. The most important fungal diseases affecting the common bean in Argentina are white mold caused by Sclerotinia sclerotiorum, angular leaf spot caused by Pseudocercospora griseola, web blight and root rot caused by Rhizoctonia solani, which can cause production losses of up to 100% in the region. At the present, the most effective strategy for controlling these diseases is the use of genetic resistance. In this sense, population study and characterization of fungal pathogens are essential for developing cultivars with durable resistance. In this review we report diversity studies carried out on these three fungal pathogens affecting the common bean in northwestern Argentina, analyzing more than 200 isolates by means of molecular, morphological and pathogenic approaches. Also, the screening of physiological resistance in several common bean commercial lines and wild native germplasm is reviewed. This review contributes to the development of sustainable management strategies and cultural practices in bean production aimed to minimize yield losses due to fungal diseases in the common bean.

4.
Sci Total Environ ; 848: 157707, 2022 Nov 20.
Artigo em Inglês | MEDLINE | ID: mdl-35908692

RESUMO

The aim of this work was to evaluate if rivers could be used for SARS-CoV-2 surveillance. Five sampling points from three rivers (AR-1 and AR-2 in Arenales River, MR-1 and MR-2 in Mojotoro River, and CR in La Caldera River) from Salta (Argentina), two of them receiving discharges from wastewater plants (WWTP), were monitored from July to December 2020. Fifteen water samples from each point (75 in total) were collected and characterized physico-chemically and microbiologically and SARS-CoV-2 was quantified by RT-qPCR. Also, two targets linked to human contributions, human polyomavirus (HPyV) and RNase P, were quantified and used to normalize SARS-CoV-2 concentration, which was compared to reported COVID-19 cases. Statistical analyses allowed us to verify the correlation between SARS-CoV-2 and the concentration of fecal indicator bacteria (FIB), as well as to find similarities and differences between sampling points. La Caldera River showed the best water quality; FIBs were within acceptable limits for recreational activities. Mojotoro River's water quality was not affected by the northern WWTP of the city. Instead, Arenales River presented the poorest water quality; at AR-2 was negatively affected by the discharges of the southern WWTP, which contributed to significant increase of fecal contamination. SARS-CoV-2 was found in about half of samples in low concentrations in La Caldera and Mojotoro Rivers, while it was high and persistent in Arenales River. No human tracers were detected in CR, only HPyV was found in MR-1, MR-2 and AR-1, and both were quantified in AR-2. The experimental and normalized viral concentrations strongly correlated with reported COVID-19 cases; thus, Arenales River at AR-2 reflected the epidemiological situation of the city. This is the first study showing the dynamic of SARS-CoV-2 concentration in an urban river highly impacted by wastewater and proved that can be used for SARS-CoV-2 surveillance to support health authorities.


Assuntos
COVID-19 , SARS-CoV-2 , COVID-19/epidemiologia , Humanos , Poliestirenos , Ribonuclease P , Rios , Águas Residuárias
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...