Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 4 de 4
Filtrar
Mais filtros










Base de dados
Tipo de estudo
Intervalo de ano de publicação
1.
Metab Brain Dis ; 37(1): 39-50, 2022 01.
Artigo em Inglês | MEDLINE | ID: mdl-34406560

RESUMO

Alzheimer's disease (AD) is clinically characterized by a progressive loss of cognitive functions and short-term memory. AD patients present two distinctive neuropathological lesions: neuritic plaques and neurofibrillary tangles (NFTs), constituted of beta-amyloid peptide (Aß) and phosphorylated and truncated tau proteins. Aß deposits around cerebral blood vessels (cerebral amyloid angiopathy, CAA) is a major contributor to vascular dysfunction in AD. Vascular amyloid deposits could be early events in AD due to dysfunction in the neurovascular unit (NVU) and the blood-brain barrier (BBB), deterioration of the gliovascular unit, and/or decrease of cerebral blood flow (CBF). These pathological events can lead to decreased Aß clearance, facilitate a neuroinflammatory environment as well as synaptic dysfunction and, finally, lead to neurodegeneration. Here, we review the histopathological AD hallmarks and discuss the two-hit vascular hypothesis of AD, emphasizing the role of neurovascular dysfunction as an early factor that favors vascular Aß aggregation and neurodegeneration. Addtionally, we emphasize that pericyte degeneration is a key and early element in AD that can trigger amyloid vascular accumulation and NVU/BBB dysfunction. Further research is required to better understand the early pathophysiological mechanisms associated with NVU alteration and CAA to generate early biomarkers and timely treatments for AD.


Assuntos
Doença de Alzheimer , Angiopatia Amiloide Cerebral , Doença de Alzheimer/metabolismo , Peptídeos beta-Amiloides/metabolismo , Encéfalo/metabolismo , Angiopatia Amiloide Cerebral/metabolismo , Angiopatia Amiloide Cerebral/patologia , Humanos , Placa Amiloide/metabolismo
2.
Front Neurol ; 12: 660087, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-33912129

RESUMO

The current pandemic caused by the new severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) has become a public health emergency. To date, March 1, 2021, coronavirus disease 2019 (COVID-19) has caused about 114 million accumulated cases and 2.53 million deaths worldwide. Previous pieces of evidence suggest that SARS-CoV-2 may affect the central nervous system (CNS) and cause neurological symptoms in COVID-19 patients. It is also known that angiotensin-converting enzyme-2 (ACE2), the primary receptor for SARS-CoV-2 infection, is expressed in different brain areas and cell types. Thus, it is hypothesized that infection by this virus could generate or exacerbate neuropathological alterations. However, the molecular mechanisms that link COVID-19 disease and nerve damage are unclear. In this review, we describe the routes of SARS-CoV-2 invasion into the central nervous system. We also analyze the neuropathologic mechanisms underlying this viral infection, and their potential relationship with the neurological manifestations described in patients with COVID-19, and the appearance or exacerbation of some neurodegenerative diseases.

3.
Int J Mol Sci ; 22(4)2021 Feb 18.
Artigo em Inglês | MEDLINE | ID: mdl-33670754

RESUMO

Alzheimer's disease (AD) is the most common neurodegenerative disease worldwide. Histopathologically, AD presents with two hallmarks: neurofibrillary tangles (NFTs), and aggregates of amyloid ß peptide (Aß) both in the brain parenchyma as neuritic plaques, and around blood vessels as cerebral amyloid angiopathy (CAA). According to the vascular hypothesis of AD, vascular risk factors can result in dysregulation of the neurovascular unit (NVU) and hypoxia. Hypoxia may reduce Aß clearance from the brain and increase its production, leading to both parenchymal and vascular accumulation of Aß. An increase in Aß amplifies neuronal dysfunction, NFT formation, and accelerates neurodegeneration, resulting in dementia. In recent decades, therapeutic approaches have attempted to decrease the levels of abnormal Aß or tau levels in the AD brain. However, several of these approaches have either been associated with an inappropriate immune response triggering inflammation, or have failed to improve cognition. Here, we review the pathogenesis and potential therapeutic targets associated with dysfunction of the NVU in AD.


Assuntos
Doença de Alzheimer/fisiopatologia , Encéfalo/irrigação sanguínea , Encéfalo/fisiopatologia , Doença de Alzheimer/tratamento farmacológico , Doença de Alzheimer/patologia , Amiloide/metabolismo , Animais , Barreira Hematoencefálica/patologia , Barreira Hematoencefálica/fisiopatologia , Encéfalo/patologia , Humanos , Terapia de Alvo Molecular
4.
J Alzheimers Dis ; 76(2): 553-569, 2020.
Artigo em Inglês | MEDLINE | ID: mdl-32538846

RESUMO

BACKGROUND: Neurofibrillary tangles (NFTs) and amyloid plaques are the neuropathological hallmarks in brains with Alzheimer's disease (AD). Post-translational modifications of tau, such as phosphorylation and truncation, have been proposed as initiators in the assembly of the abnormal paired helical filaments that constitute the NFTs. Neurons and NFTs are sites of matrix metalloproteinases (MMPs). OBJECTIVE: The aim of this study was to analyze the relationship of MMP-9 and tau protein in brain samples with AD. METHODS: This study was performed on brain tissue samples from patients with early, moderate, and late AD. MMPs and tau levels were analyzed by western blot and gelatin-substrate zymography. Immunofluorescence techniques and confocal microscopy were used to analyze the presence of both proteins in NFTs. Further, molecular dynamics simulations (MDS) and protein-protein docking were conducted to predict interaction between MMP-9 and tau protein. RESULTS: MMP-9 expression was greatest in moderate and late AD, whereas MMP-2 expression was only increased in late-stage AD. Interestingly, confocal microscopy revealed NFTs in which there was co-localization of MMP-9 and tau protein. MDS and protein-protein docking predictions indicate that a high-affinity complex can be formed between MMP-9 and full-length tau protein. CONCLUSION: These observations provide preliminary evidence of an interaction between these two proteins. Post-translational modifications of tau protein, such as C-terminal truncation or phosphorylation of amino acid residues in the MMP-9 recognition site and conformational changes in the protein, such as folding of the N-terminal sequence over the three-repeat domain, could preclude the interaction between MMP-9 and tau protein during stages of NFT development.


Assuntos
Doença de Alzheimer/metabolismo , Córtex Entorrinal/metabolismo , Metaloproteinase 9 da Matriz/biossíntese , Proteínas tau/biossíntese , Idoso , Idoso de 80 Anos ou mais , Doença de Alzheimer/patologia , Córtex Entorrinal/patologia , Feminino , Humanos , Masculino , Metaloproteinase 9 da Matriz/química , Pessoa de Meia-Idade , Simulação de Acoplamento Molecular , Ligação Proteica/fisiologia , Estrutura Secundária de Proteína , Proteínas tau/química
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...