Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 8 de 8
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Genome Biol ; 14(9): R96, 2013.
Artigo em Inglês | MEDLINE | ID: mdl-24025402

RESUMO

BACKGROUND: We have used a sensitized ENU mutagenesis screen to produce mouse lines that carry mutations in genes required for epigenetic regulation. We call these lines Modifiers of murine metastable epialleles (Mommes). RESULTS: We report a basic molecular and phenotypic characterization for twenty of the Momme mouse lines, and in each case we also identify the causative mutation. Three of the lines carry a mutation in a novel epigenetic modifier, Rearranged L-myc fusion (Rlf), and one gene, Rap-interacting factor 1 (Rif1), has not previously been reported to be involved in transcriptional regulation in mammals. Many of the other lines are novel alleles of known epigenetic regulators. For two genes, Rlf and Widely-interspaced zinc finger (Wiz), we describe the first mouse mutants. All of the Momme mutants show some degree of homozygous embryonic lethality, emphasizing the importance of epigenetic processes. The penetrance of lethality is incomplete in a number of cases. Similarly ,abnormalities in phenotype seen in the heterozygous individuals of some lines occur with incomplete penetrance. CONCLUSIONS: Recent advances in sequencing enhance the power of sensitized mutagenesis screens to identify the function of previously uncharacterized factors and to discover additional functions for previously characterized proteins. The observation of incomplete penetrance of phenotypes in these inbred mutant mice, at various stages of development, is of interest. Overall, the Momme collection of mouse mutants provides a valuable resource for researchers across many disciplines.


Assuntos
Epigênese Genética , Etilnitrosoureia/farmacologia , Genes Letais , Mutagênese , Mutagênicos/farmacologia , Mutação/efeitos dos fármacos , Alelos , Animais , Regulação da Expressão Gênica , Estudo de Associação Genômica Ampla , Genótipo , Fatores de Troca do Nucleotídeo Guanina , Heterozigoto , Homozigoto , Fatores de Transcrição Kruppel-Like/genética , Camundongos , Proteínas do Tecido Nervoso/genética , Fenótipo , Proteínas de Ligação a Telômeros/genética , Fatores de Transcrição/genética
2.
G3 (Bethesda) ; 2(11): 1393-6, 2012 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-23173090

RESUMO

We have used a forward genetic screen to identify genes required for transgene silencing in the mouse. Previously these genes were found using candidate-based sequencing, a slow and labor-intensive process. Recently, whole-exome deep sequencing has accelerated our ability to find the causative point mutations, resulting in the discovery of novel and sometimes unexpected genes. Here we report the identification of translation initiation factor 3, subunit H (eIF3h) in two modifier of murine metastable epialleles (Mommes) lines. Mice carrying mutations in this gene have not been reported previously, and a possible involvement of eIF3h in transcription or epigenetic regulation has not been considered.


Assuntos
Efeitos da Posição Cromossômica , Fator de Iniciação 3 em Eucariotos/genética , Subunidades Proteicas/genética , Animais , Exoma/genética , Inativação Gênica , Testes Genéticos , Sequenciamento de Nucleotídeos em Larga Escala , Camundongos , Camundongos Transgênicos , Mutação , Análise de Sequência de DNA , Transgenes
3.
Dev Cell ; 23(2): 265-79, 2012 Aug 14.
Artigo em Inglês | MEDLINE | ID: mdl-22841499

RESUMO

X chromosome inactivation involves multiple levels of chromatin modification, established progressively and in a stepwise manner during early development. The chromosomal protein Smchd1 was recently shown to play an important role in DNA methylation of CpG islands (CGIs), a late step in the X inactivation pathway that is required for long-term maintenance of gene silencing. Here we show that inactive X chromosome (Xi) CGI methylation can occur via either Smchd1-dependent or -independent pathways. Smchd1-dependent CGI methylation, the primary pathway, is acquired gradually over an extended period, whereas Smchd1-independent CGI methylation occurs rapidly after the onset of X inactivation. The de novo methyltransferase Dnmt3b is required for methylation of both classes of CGI, whereas Dnmt3a and Dnmt3L are dispensable. Xi CGIs methylated by these distinct pathways differ with respect to their sequence characteristics and immediate chromosomal environment. We discuss the implications of these results for understanding CGI methylation during development.


Assuntos
Proteínas Cromossômicas não Histona/metabolismo , Ilhas de CpG , Metilação de DNA , Inativação do Cromossomo X , Alelos , Animais , Linhagem Celular , Proteínas Cromossômicas não Histona/genética , Camundongos , Isoformas de Proteínas/genética , Isoformas de Proteínas/metabolismo
4.
PLoS Genet ; 5(4): e1000446, 2009 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-19360092

RESUMO

Genomic mapping of DNA replication origins (ORIs) in mammals provides a powerful means for understanding the regulatory complexity of our genome. Here we combine a genome-wide approach to identify preferential sites of DNA replication initiation at 0.4% of the mouse genome with detailed molecular analysis at distinct classes of ORIs according to their location relative to the genes. Our study reveals that 85% of the replication initiation sites in mouse embryonic stem (ES) cells are associated with transcriptional units. Nearly half of the identified ORIs map at promoter regions and, interestingly, ORI density strongly correlates with promoter density, reflecting the coordinated organisation of replication and transcription in the mouse genome. Detailed analysis of ORI activity showed that CpG island promoter-ORIs are the most efficient ORIs in ES cells and both ORI specification and firing efficiency are maintained across cell types. Remarkably, the distribution of replication initiation sites at promoter-ORIs exactly parallels that of transcription start sites (TSS), suggesting a co-evolution of the regulatory regions driving replication and transcription. Moreover, we found that promoter-ORIs are significantly enriched in CAGE tags derived from early embryos relative to all promoters. This association implies that transcription initiation early in development sets the probability of ORI activation, unveiling a new hallmark in ORI efficiency regulation in mammalian cells.


Assuntos
Mamíferos/genética , Origem de Replicação , Transcrição Gênica , Animais , Linhagem Celular , Ilhas de CpG , Células-Tronco Embrionárias/citologia , Camundongos , Regiões Promotoras Genéticas
5.
Nat Genet ; 40(5): 663-9, 2008 May.
Artigo em Inglês | MEDLINE | ID: mdl-18425126

RESUMO

X-chromosome inactivation is the mammalian dosage compensation mechanism by which transcription of X-linked genes is equalized between females and males. In an N-ethyl-N-nitrosourea (ENU) mutagenesis screen on mice for modifiers of epigenetic reprogramming, we identified the MommeD1 (modifier of murine metastable epialleles) mutation as a semidominant suppressor of variegation. MommeD1 shows homozygous female-specific mid-gestation lethality and hypomethylation of the X-linked gene Hprt1, suggestive of a defect in X inactivation. Here we report that the causative point mutation lies in a previously uncharacterized gene, Smchd1 (structural maintenance of chromosomes hinge domain containing 1). We find that SmcHD1 is not required for correct Xist expression, but localizes to the inactive X and has a role in the maintenance of X inactivation and the hypermethylation of CpG islands associated with the inactive X. This finding links a group of proteins normally associated with structural aspects of chromosome biology with epigenetic gene silencing.


Assuntos
Proteínas Cromossômicas não Histona/metabolismo , Inativação Gênica , Inativação do Cromossomo X , Cromossomo X/metabolismo , Animais , Proteínas Cromossômicas não Histona/análise , Proteínas Cromossômicas não Histona/genética , Ilhas de CpG , Metilação de DNA , Fibroblastos/ultraestrutura , Camundongos , Mutação Puntual , RNA Longo não Codificante , RNA não Traduzido/metabolismo , Cromossomo X/química , Cromossomo X/genética
6.
Nat Genet ; 37(11): 1274-9, 2005 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-16244654

RESUMO

Embryonic stem (ES) cells are important tools in the study of gene function and may also become important in cell therapy applications. Establishment of stable XX ES cell lines from mouse blastocysts is relatively problematic owing to frequent loss of one of the two X chromosomes. Here we show that DNA methylation is globally reduced in XX ES cell lines and that this is attributable to the presence of two active X chromosomes. Hypomethylation affects both repetitive and unique sequences, the latter including differentially methylated regions that regulate expression of parentally imprinted genes. Methylation of differentially methylated regions can be restored coincident with elimination of an X chromosome in early-passage parthenogenetic ES cells, suggesting that selection against loss of methylation may provide the basis for X-chromosome instability. Finally, we show that hypomethylation is associated with reduced levels of the de novo DNA methyltransferases Dnmt3a and Dnmt3b and that ectopic expression of these factors restores global methylation levels.


Assuntos
Metilação de DNA , Embrião de Mamíferos/citologia , Genoma , Células-Tronco/fisiologia , Cromossomo X/genética , Animais , Instabilidade Cromossômica , DNA (Citosina-5-)-Metiltransferases/genética , DNA (Citosina-5-)-Metiltransferases/metabolismo , DNA Metiltransferase 3A , Impressão Genômica , Humanos , Camundongos , Camundongos Endogâmicos C57BL , Camundongos Endogâmicos CBA , DNA Metiltransferase 3B
7.
Reprod Biomed Online ; 8(4): 398-407, 2004 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-15149562

RESUMO

Improved prediction of male fertility requires advances in semen analysis. This study examined the reproducibility and independence of the flow cytometry acridine orange test (FCM-AOT) of sperm chromatin integrity as an assessment of semen quality. The study found that FCM-AOT results are not significantly affected by up to 6 h delay in semen preparation (n = 9) or contamination of semen with moderate concentrations of bacteria (<10(8)/ml E. coli or Staph. epidermidis, n = 14). The variation of replicate measurements within samples was low (%Abnormal alpha(t): SD = 1.4, 95%CI = 4.6, n = 25) and different samples from the same men were mostly within the range of measurement error (n = 35). FCM-AOT variables, in particular %Abnormal alpha(t), displayed significant correlations with motility (r = -0.557), vitality (r = -0.469) and morphology (r = -0.464, n = 201), which are similar in magnitude to those existing between the standard semen variables. Surprisingly, no correlation was found between %Abnormal alpha(t) and the microscopic acridine orange test (M-AOT) (n = 185), suggesting the FCM results are sensitive to a different aspect of sperm quality. In summary, this study confirms that although not totally independent of standard semen analysis or the M-AOT, it is found to be a robust, sensitive and reproducible measure of semen quality, representative of the individual.


Assuntos
Laranja de Acridina , Citometria de Fluxo , Corantes Fluorescentes , Infertilidade Masculina/diagnóstico , Contagem de Espermatozoides , Motilidade dos Espermatozoides , Espermatozoides/patologia , Sobrevivência Celular , Humanos , Infertilidade Masculina/patologia , Masculino , Reprodutibilidade dos Testes , Sêmen , Sensibilidade e Especificidade
8.
Dev Dyn ; 227(2): 170-84, 2003 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-12761845

RESUMO

Early brain development is characterised by the proliferation of neural precursor cells. Several families of signalling molecules such as the fibroblast growth factors (FGFs) and Wnts are known to play important roles in this early phase of brain development. Accumulating evidence demonstrates that signalling of these molecules requires the presence of heparan sulfate chains attached to a proteoglycan core protein (HSPG). However, the specific identity of the HSPG components in the developing brain is unknown. To determine which HSPGs might be involved at this early phase, we analysed the expression of the major cell surface HSPG families in the developing brain at a time of most active proliferation. Syndecan-1 and glypican-4 were the most highly expressed in the developing brain during the time of peak proliferation and localise to ventricular regions of the brain, where the precursor cells are proliferating. Syndecan-4, although less abundant, also localises to cells in the ventricular zone. We have also examined HSPG involvement in brain development using cultures of embryonic neural precursor cells. We find that FGF2 stimulation of proliferation is inhibited in the presence of sodium chlorate, an inhibitor of heparan sulfate synthesis, and is rescued by addition of exogenous heparan sulfate. These data support a requirement for heparan sulfate in FGF signalling for proliferation of brain precursor cells. The expression of these specific HSPGs within the proliferative zone of the brain suggests that they may be involved in regulation of early brain development, such as FGF-stimulated proliferation.


Assuntos
Encéfalo/citologia , Encéfalo/embriologia , Proteoglicanas de Heparan Sulfato/metabolismo , Neurônios/metabolismo , Células-Tronco/metabolismo , Animais , Especificidade de Anticorpos , Encéfalo/metabolismo , Divisão Celular/efeitos dos fármacos , Divisão Celular/fisiologia , Células Cultivadas , Cloratos/farmacologia , Fatores de Crescimento de Fibroblastos/farmacologia , Regulação da Expressão Gênica no Desenvolvimento , Glipicanas , Proteoglicanas de Heparan Sulfato/genética , Proteoglicanas de Heparan Sulfato/imunologia , Proteoglicanas de Heparan Sulfato/farmacologia , Glicoproteínas de Membrana/genética , Glicoproteínas de Membrana/metabolismo , Proteínas de Membrana/metabolismo , Camundongos , Neurônios/citologia , Proteoglicanas/genética , Proteoglicanas/metabolismo , Reação em Cadeia da Polimerase Via Transcriptase Reversa , Células-Tronco/citologia , Sindecana-1 , Sindecana-2 , Sindecana-3 , Sindecana-4 , Sindecanas
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...