Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 49
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
J Membr Biol ; 253(6): 631-645, 2020 12.
Artigo em Inglês | MEDLINE | ID: mdl-33184678

RESUMO

Kinetic experiments were performed with preparations of kidney Na,K-ATPase in isolated membrane fragments or reconstituted in vesicles to obtain information of the activation energies under turnover conditions and for selected partial reactions of the Post-Albers pump cycle. The ion transport activities were detected with potential or conformation sensitive fluorescent dyes in steady-state or time-resolved experiments. The activation energies were derived from Arrhenius plots of measurements in the temperature range between 5 °C and 37 °C. The results were used to elaborate indications of the respective underlying rate-limiting reaction steps and allowed conclusions to be drawn about possible molecular reaction mechanisms. The observed consequent alteration between ligand-induced reaction and conformational relaxation steps when the Na,K-ATPase performs the pump cycle, together with constraints set by thermodynamic principles, provided restrictions which have to be met when mechanistic models are proposed. A model meeting such requirements is presented for discussion.


Assuntos
ATPase Trocadora de Sódio-Potássio/metabolismo , Ativação Enzimática , Corantes Fluorescentes , Hidrólise , Transporte de Íons , Cinética , Potássio/metabolismo , Ligação Proteica , Sódio/metabolismo , ATPase Trocadora de Sódio-Potássio/química , Temperatura
2.
Mol Membr Biol ; 35(1): 21-38, 2019 12.
Artigo em Inglês | MEDLINE | ID: mdl-31259644

RESUMO

In bacteria, K+ is used to maintain cell volume and osmotic potential. Homeostasis normally involves a network of constitutively expressed transport systems, but in K+ deficient environments, the KdpFABC complex uses ATP to pump K+ into the cell. This complex appears to be a hybrid of two types of transporters, with KdpA descending from the superfamily of K+ transporters and KdpB belonging to the superfamily of P-type ATPases. Studies of enzymatic activity documented a catalytic cycle with hallmarks of classical P-type ATPases and studies of ion transport indicated that K+ import into the cytosol occurred in the second half of this cycle in conjunction with hydrolysis of an aspartyl phosphate intermediate. Atomic structures of the KdpFABC complex from X-ray crystallography and cryo-EM have recently revealed conformations before and after formation of this aspartyl phosphate that appear to contradict the functional studies. Specifically, structural comparisons with the archetypal P-type ATPase, SERCA, suggest that K+ transport occurs in the first half of the cycle, accompanying formation of the aspartyl phosphate. Further controversy has arisen regarding the path by which K+ crosses the membrane. The X-ray structure supports the conventional view that KdpA provides the conduit, whereas cryo-EM structures suggest that K+ moves from KdpA through a long, intramembrane tunnel to reach canonical ion binding sites in KdpB from which they are released to the cytosol. This review discusses evidence supporting these contradictory models and identifies key experiments needed to resolve discrepancies and produce a unified model for this fascinating mechanistic hybrid.


Assuntos
Adenosina Trifosfatases , Proteínas de Transporte de Cátions , Proteínas de Escherichia coli , Escherichia coli/enzimologia , Complexos Multiproteicos/química , Potássio , Adenosina Trifosfatases/química , Adenosina Trifosfatases/metabolismo , Sítios de Ligação , Proteínas de Transporte de Cátions/química , Proteínas de Transporte de Cátions/metabolismo , Cristalografia por Raios X , Proteínas de Escherichia coli/química , Proteínas de Escherichia coli/metabolismo , Transporte de Íons/fisiologia , Complexos Multiproteicos/metabolismo , Potássio/química , Potássio/metabolismo
3.
J Gen Physiol ; 149(11): 969-973, 2017 11 06.
Artigo em Inglês | MEDLINE | ID: mdl-29054866
4.
Biochemistry ; 56(7): 1005-1016, 2017 02 21.
Artigo em Inglês | MEDLINE | ID: mdl-28124894

RESUMO

Since the beginning of investigations of the Na,K-ATPase, it has been well-known that Mg2+ is an essential cofactor for activation of enzymatic ATP hydrolysis without being transported through the cell membrane. Moreover, experimental evidence has been collected through the years that shows that Mg2+ ions have a regulatory effect on ion transport by interacting with the cytoplasmic side of the ion pump. Our experiments allowed us to reveal the underlying mechanism. Mg2+ is able to bind to a site outside the membrane domain of the protein's α subunit, close to the entrance of the access channel to the ion-binding sites, thus modifying the local concentration of the ions in the electrolyte, of which Na+, K+, and H+ are of physiological interest. The decrease in the concentration of these cations can be explained by electrostatic interaction and estimated by the Debye-Hückel theory. This effect provokes the observed apparent reduction of the binding affinity of the binding sites of the Na,K-ATPase in the presence of various Mg2+ concentrations. The presence of the bound Mg2+, however, does not affect the reaction kinetics of the transport function of the ion pump. Therefore, stopped-flow experiments could be performed to gain the first insight into the Na+ binding kinetics on the cytoplasmic side by Mg2+ concentration jump experiments.


Assuntos
Magnésio/metabolismo , ATPase Trocadora de Sódio-Potássio/química , ATPase Trocadora de Sódio-Potássio/metabolismo , Animais , Sítios de Ligação , Ligação Competitiva , Cátions/metabolismo , Citoplasma , Concentração de Íons de Hidrogênio , Cinética , Magnésio/química , Potássio/metabolismo , Coelhos , Sódio/metabolismo , Espectrometria de Fluorescência
5.
Biophys J ; 112(2): 288-299, 2017 Jan 24.
Artigo em Inglês | MEDLINE | ID: mdl-28122215

RESUMO

The Na+,K+-ATPase is present in the plasma membrane of all animal cells. It plays a crucial role in maintaining the Na+ and K+ electrochemical potential gradients across the membrane, which are essential in numerous physiological processes, e.g., nerve, muscle, and kidney function. Its cellular activity must, therefore, be under tight metabolic control. Consideration of eosin fluorescence and stopped-flow kinetic data indicates that the enzyme's E2 conformation is stabilized by electrostatic interactions, most likely between the N-terminus of the protein's catalytic α-subunit and the adjacent membrane. The electrostatic interactions can be screened by increasing ionic strength, leading to a more evenly balanced equilibrium between the E1 and E2 conformations. This represents an ideal situation for effective regulation of the Na+,K+-ATPase's enzymatic activity, because protein modifications, which perturb this equilibrium in either direction, can then easily lead to activation or inhibition. The effect of ionic strength on the E1:E2 distribution and the enzyme's kinetics can be mathematically described by the Gouy-Chapman theory of the electrical double layer. Weakening of the electrostatic interactions and a shift toward E1 causes a significant increase in the rate of phosphorylation of the enzyme by ATP. Electrostatic stabilization of the Na+,K+-ATPase's E2 conformation, thus, could play an important role in regulating the enzyme's physiological catalytic turnover.


Assuntos
ATPase Trocadora de Sódio-Potássio/antagonistas & inibidores , ATPase Trocadora de Sódio-Potássio/metabolismo , Eletricidade Estática , Trifosfato de Adenosina/metabolismo , Animais , Simulação de Dinâmica Molecular , Concentração Osmolar , Fosforilação , Conformação Proteica , ATPase Trocadora de Sódio-Potássio/química , Suínos
6.
Methods Mol Biol ; 1377: 127-56, 2016.
Artigo em Inglês | MEDLINE | ID: mdl-26695029

RESUMO

Reconstitution of P-type ATPases in unilamellar liposomes is a useful technique to study functional properties of these active ion transporters. Experiments with such liposomes provide an easy access to substrate-binding affinities of the ion pumps as well as to the lipid and temperature dependence of the pump current. Here, we describe two reconstitution methods by dialysis and the use of potential-sensitive fluorescence dyes to study transport properties of two P-type ATPases, the Na,K-ATPase from rabbit kidney and the K(+)-transporting KdpFABC complex from E. coli. Several techniques are introduced how the measured fluorescence signals may be analyzed to gain information on properties of the ion pumps.


Assuntos
Adenosina Trifosfatases/química , Proteínas de Transporte de Cátions/química , Proteínas de Escherichia coli/química , Lipossomos/química , ATPase Trocadora de Sódio-Potássio/química , Adenosina Trifosfatases/metabolismo , Animais , Proteínas de Transporte de Cátions/metabolismo , Escherichia coli/enzimologia , Proteínas de Escherichia coli/metabolismo , Transporte de Íons , Rim/enzimologia , Cinética , Lipossomos/metabolismo , Coelhos , Sódio/metabolismo , ATPase Trocadora de Sódio-Potássio/genética
7.
Biochemistry ; 54(15): 2508-19, 2015 Apr 21.
Artigo em Inglês | MEDLINE | ID: mdl-25839323

RESUMO

When the Na,K-ATPase pumps at each turnover two K(+) ions into the cytoplasm, this translocation consists of several reaction steps. First, the ions diffuse consecutively from the extracellular phase through an access pathway to the binding sites where they are coordinated. In the next step, the enzyme is dephosphorylated and the ions are occluded inside the membrane domain. The subsequent transition to the E1 conformation produces a deocclusion of the binding sites to the cytoplasmic side of the membrane and allows in the last steps ion dissociation and diffusion to the aqueous phase. The interaction and competition of K(+) with various quaternary organic ammonium ions have been used to gain insight into the molecular mechanism of the ion binding process from the extracellular side in the P-E2 conformation of the enzyme. Using the electrochromic styryl dye RH421, evidence has been obtained that the access pathway consists of a wide and water-filled funnel-like part that is accessible also for bulky cations such as the benzyltriethylammonium ion, and a narrow part that permits passage only of small cations such as K(+) and NH4(+) in a distinct electrogenic way. Benzyltriethylammonium ions inhibit K(+) binding in a competitive manner that can be explained by a stopper-like function at the interface between the wide and narrow parts of the access pathway. In contrast to other quaternary organic ammonium ions, benzyltriethylammonium ions show a specific binding to the ion pump in a position inside the access pathway where it blocks effectively the access to the binding sites.


Assuntos
Corantes Fluorescentes/química , Potássio/química , Compostos de Amônio Quaternário/química , ATPase Trocadora de Sódio-Potássio/química , Animais , Sítios de Ligação , Potássio/metabolismo , Coelhos , ATPase Trocadora de Sódio-Potássio/metabolismo
8.
Biochemistry ; 54(3): 844-52, 2015 Jan 27.
Artigo em Inglês | MEDLINE | ID: mdl-25537637

RESUMO

Outer membrane proteins are vital for Gram-negative bacteria and organisms that inherited organelles from them. Proteins from the Omp85/BamA family conduct the insertion of membrane proteins into the outer membrane. We show that an eight-stranded outer membrane ß-barrel protein, TtoA, is inserted and folded into liposomes by an Omp85 homologue. Furthermore, we recorded the channel conductance of this Omp85 protein in black lipid membranes, alone and in the presence of peptides comprising the sequence of the two N-terminal and the two C-terminal ß-strands of TtoA. Only with the latter could a long-living compound channel that exhibits conductance levels higher than those of the Omp85 protein alone be observed. These data support a model in which unfolded outer membrane protein after docking with its C-terminus penetrates into the transmembrane ß-barrel of the Omp85 protein and augments its ß-sheet at the first strand. Augmentation with successive ß-strands leads to a compound, dilated barrel of both proteins.


Assuntos
Proteínas da Membrana Bacteriana Externa/química , Proteínas da Membrana Bacteriana Externa/metabolismo , Thermus thermophilus/metabolismo , Proteínas da Membrana Bacteriana Externa/isolamento & purificação , Membrana Celular/metabolismo , Ativação do Canal Iônico , Modelos Moleculares , Peptídeos/metabolismo , Dobramento de Proteína , Estrutura Secundária de Proteína , Proteolipídeos/metabolismo , Termodinâmica
9.
Biochemistry ; 53(35): 5674-82, 2014 Sep 09.
Artigo em Inglês | MEDLINE | ID: mdl-25144826

RESUMO

KdpFABC complexes were reconstituted in Escherichia coli lipid vesicles, and ion pumping was activated by addition of ATP to the external medium which corresponds to the cytoplasm under physiological conditions. ATP-driven potassium extrusion was studied in the presence of various substrates potentially influencing transport rate. The pump current was detected as a decrease of the membrane potential by the voltage-sensitive dye DiSC3(5). The results indicate that high cytoplasmic K(+) concentrations have an inhibitory effect on the KdpFABC complex. The pump current decreased to ∼25% of the maximal value at 140 mM K(+) and minimal Mg(2+)concentrations. This effect could be counteracted with increased Mg(2+) concentrations on the cytoplasmic side. This observation may be explained by the Gouy-Chapman effect of two Mg(2+) ions probably bound with a K1/2 of 0.8 mM close to the entrance of the access channel to the binding sites. This factor ensures that under physiological conditions the rate-limiting effect of K(+) release is significantly reduced. Also both ADP and inorganic phosphate are able to reduce the turnover rate of the pump by reversing the phosphorylation step (Ki of 151 µM) and the dephosphorylation step (Ki of 268 µM), respectively. In the case of the DDM-solubilized KdpFABC complex, activation energy under turnover conditions was previously found to be 55 kJ/mol, and the o-vanadate inhibition constant is shown here to be ∼1 µM, which is in agreement with values reported for other P-type ATPases. In the case of the reconstituted enzyme, however, significant differences were observed that have to be assigned to effects of the lipid bilayer environment. The activation energy was increased by a factor of 2, whereas the inhibition by o-vanadate became reduced in a way that only ∼66% of the enzyme could be inhibited and the inhibition constant was increased to a value of ∼60 µM.


Assuntos
Adenosina Trifosfatases/metabolismo , Proteínas de Transporte de Cátions/metabolismo , Proteínas de Escherichia coli/metabolismo , Difosfato de Adenosina/metabolismo , Adenosina Trifosfatases/antagonistas & inibidores , Proteínas de Transporte de Cátions/antagonistas & inibidores , Citoplasma/metabolismo , Inibidores Enzimáticos/farmacologia , Escherichia coli/metabolismo , Proteínas de Escherichia coli/antagonistas & inibidores , Transporte de Íons , Cinética , Lipossomos/metabolismo , Magnésio/metabolismo , Fosfatos/metabolismo , Potássio/metabolismo , Termodinâmica , Vanadatos/farmacologia
10.
Am J Respir Crit Care Med ; 190(5): 522-32, 2014 Sep 01.
Artigo em Inglês | MEDLINE | ID: mdl-25029038

RESUMO

RATIONALE: Alveolar liquid clearance is regulated by Na(+) uptake through the apically expressed epithelial sodium channel (ENaC) and basolaterally localized Na(+)-K(+)-ATPase in type II alveolar epithelial cells. Dysfunction of these Na(+) transporters during pulmonary inflammation can contribute to pulmonary edema. OBJECTIVES: In this study, we sought to determine the precise mechanism by which the TIP peptide, mimicking the lectin-like domain of tumor necrosis factor (TNF), stimulates Na(+) uptake in a homologous cell system in the presence or absence of the bacterial toxin pneumolysin (PLY). METHODS: We used a combined biochemical, electrophysiological, and molecular biological in vitro approach and assessed the physiological relevance of the lectin-like domain of TNF in alveolar liquid clearance in vivo by generating triple-mutant TNF knock-in mice that express a mutant TNF with deficient Na(+) uptake stimulatory activity. MEASUREMENTS AND MAIN RESULTS: TIP peptide directly activates ENaC, but not the Na(+)-K(+)-ATPase, upon binding to the carboxy-terminal domain of the α subunit of the channel. In the presence of PLY, a mediator of pneumococcal-induced pulmonary edema, this binding stabilizes the ENaC-PIP2-MARCKS complex, which is necessary for the open probability conformation of the channel and preserves ENaC-α protein expression, by means of blunting the protein kinase C-α pathway. Triple-mutant TNF knock-in mice are more prone than wild-type mice to develop edema with low-dose intratracheal PLY, correlating with reduced pulmonary ENaC-α subunit expression. CONCLUSIONS: These results demonstrate a novel TNF-mediated mechanism of direct ENaC activation and indicate a physiological role for the lectin-like domain of TNF in the resolution of alveolar edema during inflammation.


Assuntos
Agonistas do Canal de Sódio Epitelial/metabolismo , Canais Epiteliais de Sódio/metabolismo , Peptídeos Cíclicos/metabolismo , Alvéolos Pulmonares/metabolismo , Edema Pulmonar/metabolismo , Estreptolisinas , Fator de Necrose Tumoral alfa/metabolismo , Animais , Proteínas de Bactérias , Agonistas do Canal de Sódio Epitelial/química , Canais Epiteliais de Sódio/química , Feminino , Masculino , Camundongos , Camundongos Endogâmicos C57BL , Camundongos Mutantes , Peptídeos Cíclicos/química , Alvéolos Pulmonares/microbiologia , Edema Pulmonar/microbiologia , Fator de Necrose Tumoral alfa/química
12.
Biochemistry ; 53(19): 3218-28, 2014 May 20.
Artigo em Inglês | MEDLINE | ID: mdl-24766073

RESUMO

The time-resolved kinetics of the KdpFABC complex solubilized in Aminoxide WS-35 was investigated by ATP concentration jump experiments. ATP was photoreleased from its inactive precursor, caged ATP, and charge movements in the membrane domain of the KdpFABC were detected by the electrochromic dye RH421. At low ATP concentrations, the ATP binding step became rate-limiting with an apparent, pH-independent ATP binding affinity of ~70 µM. At saturating ATP concentrations, the rate-limiting step is the conformational transition (E1-P → P-E2) with a rate constant of ~1.7 s(-1) at 20 °C that was independent of K(+) concentration. This observation together with the detected fluorescence decrease indicates that K(+) (or another positive ion) is bound in the membrane domain after enzyme phosphorylation and the conformational transition to the P-E2 state. pH dependence experiments revealed different roles of H(+) in the transport mechanism. Two different functions of protons for the ion pump must be distinguished. On one hand, there are electrogenically bound "functional" protons, which are not transported but prerequisite for the performance of the ATP-driven half-cycle. On the other hand, protons bind to the transport sites, acting as weak congeners of K(+). There possibly are noncompetitively bound protons, affecting the enzyme activity and/or coupling between KdpA and KdpB subunits. Finally, the recently proposed Post-Albers model for the KdpFABC complex was supplemented with stoichiometry factors of 2 for K(+) and 3 for H(+), and additional inhibitory side reactions controlled by H(+) were introduced, which are relevant at pH <6.5 and/or in the absence of K(+).


Assuntos
Adenosina Trifosfatases/química , Trifosfato de Adenosina/química , Proteínas de Transporte de Cátions/química , Proteínas de Escherichia coli/química , Escherichia coli/enzimologia , Modelos Químicos , Complexos Multienzimáticos/química , Prótons , Adenosina Trifosfatases/genética , Adenosina Trifosfatases/metabolismo , Trifosfato de Adenosina/genética , Trifosfato de Adenosina/metabolismo , Proteínas de Transporte de Cátions/genética , Proteínas de Transporte de Cátions/metabolismo , Escherichia coli/genética , Proteínas de Escherichia coli/genética , Proteínas de Escherichia coli/metabolismo , Concentração de Íons de Hidrogênio , Transporte de Íons/fisiologia , Cinética , Complexos Multienzimáticos/genética , Complexos Multienzimáticos/metabolismo , Potássio/química , Potássio/metabolismo
13.
Biophys J ; 105(12): 2695-705, 2013 Dec 17.
Artigo em Inglês | MEDLINE | ID: mdl-24359741

RESUMO

Whole-cell patch-clamp measurements of the current, Ip, produced by the Na(+),K(+)-ATPase across the plasma membrane of rabbit cardiac myocytes show an increase in Ip over the extracellular Na(+) concentration range 0-50 mM. This is not predicted by the classical Albers-Post scheme of the Na(+),K(+)-ATPase mechanism, where extracellular Na(+) should act as a competitive inhibitor of extracellular K(+) binding, which is necessary for the stimulation of enzyme dephosphorylation and the pumping of K(+) ions into the cytoplasm. The increase in Ip is consistent with Na(+) binding to an extracellular allosteric site, independent of the ion transport sites, and an increase in turnover via an acceleration of the rate-determining release of K(+) to the cytoplasm, E2(K(+))2 → E1 + 2K(+). At normal physiological concentrations of extracellular Na(+) of 140 mM, it is to be expected that binding of Na(+) to the allosteric site would be nearly saturated. Its purpose would seem to be simply to optimize the enzyme's ion pumping rate under its normal physiological conditions. Based on published crystal structures, a possible location of the allosteric site is within a cleft between the α- and ß-subunits of the enzyme.


Assuntos
Sítio Alostérico , Miócitos Cardíacos/metabolismo , ATPase Trocadora de Sódio-Potássio/metabolismo , Sódio/metabolismo , Potenciais de Ação , Regulação Alostérica , Animais , Miócitos Cardíacos/fisiologia , Potássio/metabolismo , Ligação Proteica , Coelhos , ATPase Trocadora de Sódio-Potássio/química
14.
J Membr Biol ; 246(12): 967-79, 2013 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-24105627

RESUMO

The human α1/His10-ß1 isoform of Na,K-ATPase has been reconstituted as a complex with and without FXYD1 into proteoliposomes of various lipid compositions in order to study the effect of the regulatory subunit on the half-saturating Na⁺ concentration (K(½)) of Na⁺ ions for activation of the ion pump. It has been shown that the fraction of negatively charged lipid in the bilayer crucially affects the regulatory properties. At low concentrations of the negatively charged lipid DOPS (<10 %), FXYD1 increases K(½) of Na⁺ ions for activation of the ion pump. Phosphorylation of FXYD1 by protein kinase A at Ser68 abrogates this effect. Conversely, for proteoliposomes made with high concentrations of DOPS (>10 %), little or no effect of FXYD1 on the K(½) of Na⁺ ions is observed. Depending on ionic strength and lipid composition of the proteoliposomes, FXYD1 can alter the K(½) of Na⁺ ions by up to twofold. We propose possible molecular mechanisms to explain the regulatory effects of FXYD1 and the influence of charged lipid and protein phosphorylation. In particular, the positively charged C-terminal helix of FXYD1 appears to be highly mobile and may interact with the cytoplasmic N domain of the α-subunit, the interaction being strongly affected by phosphorylation at Ser68 and the surface charge of the membrane.


Assuntos
Membrana Celular/química , Membrana Celular/metabolismo , Proteínas de Membrana/metabolismo , Fosfoproteínas/metabolismo , ATPase Trocadora de Sódio-Potássio/metabolismo , Animais , Transporte Biológico , Proteínas Quinases Dependentes de AMP Cíclico/metabolismo , Humanos , Íons/metabolismo , Rim/metabolismo , Cinética , Lipídeos de Membrana/química , Lipídeos de Membrana/metabolismo , Potenciais da Membrana , Complexos Multiproteicos/química , Complexos Multiproteicos/metabolismo , Concentração Osmolar , Fosforilação , Ligação Proteica , Isoformas de Proteínas/química , Isoformas de Proteínas/metabolismo , Proteolipídeos/metabolismo , Coelhos
15.
Biochemistry ; 52(33): 5563-76, 2013 Aug 20.
Artigo em Inglês | MEDLINE | ID: mdl-23930894

RESUMO

The high-affinity potassium uptake system KdpFABC is a unique type Ia P-type ATPase, because it separates the sites of ATP hydrolysis and ion transport on two different subunits. KdpFABC was expressed in Escherichia coli. It was then isolated and purified to homogeneity to obtain a detergent-solubilized enzyme complex that allowed the analysis of ion binding properties. The electrogenicity and binding affinities of the ion pump for K(+) and H(+) were determined in detergent-solubilized complexes by means of the electrochromic styryl dye RH421. Half-saturating K(+) concentrations and pK values for H(+) binding could be obtained in both the unphosphorylated and phosphorylated conformations of KdpFABC. The interaction of both ions with KdpFABC was studied in detail, and the presence of independent binding sites was ascertained. It is proposed that KdpFABC reconstituted in vesicles translocates protons at a low efficiency opposite from the well-established import of K(+) into the bacteria. On the basis of our results, various mechanistic pump cycle models were derived from the general Post-Albers scheme of P-type ATPases and discussed in the framework of the experimental evidence to propose a possible molecular pump cycle for KdpFABC.


Assuntos
Adenosina Trifosfatases/metabolismo , Proteínas de Transporte de Cátions/metabolismo , Proteínas de Escherichia coli/metabolismo , Potássio/metabolismo , Adenosina Trifosfatases/química , Trifosfato de Adenosina/metabolismo , Proteínas de Transporte de Cátions/química , Detergentes/química , Eletroforese em Gel de Poliacrilamida , Escherichia coli/enzimologia , Escherichia coli/metabolismo , Proteínas de Escherichia coli/química , Concentração de Íons de Hidrogênio , Hidrólise , Transporte de Íons , Cinética , Lipossomos/química , Lipossomos/metabolismo , Modelos Moleculares , Fosforilação , Ligação Proteica , Conformação Proteica , Subunidades Proteicas/química , Subunidades Proteicas/metabolismo , Prótons , Compostos de Piridínio/química , Sódio/metabolismo , Estirenos/química , Termodinâmica
16.
Biochim Biophys Acta ; 1827(10): 1205-12, 2013 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-23850548

RESUMO

The Na(+),K(+)-ATPase is accepted as an important source of heat generation (thermogenesis) in animals. Based on information gained on the kinetics of the enzyme's partial reactions we consider via computer simulation whether modifications to the function of the combined Na(+),K(+)-ATPase/plasma membrane complex system could lead to an increased body temperature, either through the course of evolution or during an individual's lifespan. The enzyme's kinetics must be considered because it is the rate of heat generation which determines body temperature, not simply the amount of heat per enzymatic cycle. The results obtained indicate that a decrease in thermodynamic efficiency of the Na(+),K(+)-ATPase, which could come about by Na(+) substituting for K(+) on the enzyme's extracellular face, could not account for increased thermogenesis. The only feasible mechanisms are an increase in the enzyme's expression level or an increase in its ion pumping activity. The major source of Na(+),K(+)-ATPase-related thermogenesis (72% of heat production) is found to derive from passive Na(+) diffusion into the cell, which counterbalances outward Na(+) pumping to maintain a constant Na(+) concentration gradient across the membrane. A simultaneous increase in both Na(+),K(+)-ATPase activity and the membrane's passive Na(+) permeability could promote a higher body temperature.


Assuntos
Membrana Celular/metabolismo , Potássio/metabolismo , ATPase Trocadora de Sódio-Potássio/metabolismo , Sódio/metabolismo , Termogênese/fisiologia , Animais , Transporte Biológico , Simulação por Computador , Cinética
17.
Biophys J ; 103(4): 677-88, 2012 Aug 22.
Artigo em Inglês | MEDLINE | ID: mdl-22947929

RESUMO

Most kinetic measurements of the partial reactions of Na(+),K(+)-ATPase have been conducted on enzyme from mammalian kidney. Here we present a kinetic model that is based on the available equilibrium and kinetic parameters of purified kidney enzyme, and allows predictions of its steady-state turnover and pump current in intact cells as a function of ion and ATP concentrations and the membrane voltage. Using this model, we calculated the expected dependence of the pump current on voltage and extracellular Na(+) concentration. The simulations indicate a lower voltage dependence at negative potentials of the kidney enzyme in comparison with heart muscle Na(+),K(+)-ATPase, in agreement with experimental results. The voltage dependence is enhanced at high extracellular Na(+) concentrations. This effect can be explained by a voltage-dependent depopulation of extracellular K(+) ion binding sites on the E2P state and an increase in the proportion of enzyme in the E1P(Na(+))(3) state in the steady state. This causes a decrease in the effective rate constant for occlusion of K(+) by the E2P state and hence a drop in turnover. Around a membrane potential of zero, negligible voltage dependence is observed because the voltage-independent E2(K(+))(2) → E1 + 2K(+) transition is the major rate-determining step.


Assuntos
Rim/enzimologia , Modelos Biológicos , Miócitos Cardíacos/enzimologia , ATPase Trocadora de Sódio-Potássio/metabolismo , Animais , Domínio Catalítico , Regulação Enzimológica da Expressão Gênica , Isoenzimas/química , Isoenzimas/metabolismo , Cinética , Especificidade de Órgãos , ATPase Trocadora de Sódio-Potássio/química , Proteínas de Xenopus/química , Proteínas de Xenopus/metabolismo
18.
Biophys J ; 101(8): 1896-904, 2011 Oct 19.
Artigo em Inglês | MEDLINE | ID: mdl-22004743

RESUMO

An open membrane preparation containing SR Ca-ATPase was prepared from sarcoplasmic-reticulum vesicles to study the ion binding kinetics in the P-E(2) conformation. Because Ca(2+) and H(+) binding are electrogenic reactions, fluorescent styryl dyes could be used to determine changes in the binding site occupation in equilibrium titration experiments and time-resolved relaxation processes triggered by a pH jump. By photo release from caged proton the pH of the electrolyte could be decreased in a step of 0.1 pH units by a single ultraviolet-laser flash. Analysis of the pH-jump induced relaxation process in the P-E(2) conformation showed that three Ca-ATPase-specific processes could be identified, fast H(+) binding (τ < 100 µs) and pH-insensitive conformational relaxations after the release of the Ca(2+) ion (τ ∼160 ms), and a slow process (τ ∼3.4 s) whose origin could not be unambiguously revealed. The Ca(2+)-binding affinity in the P-E(2) conformation was reduced with increasing pH, a behavior that can be explained by a reversible transition of the empty P-E(2) state to an inactivated state of the ion pump. All findings are interpreted in the framework of the Post-Albers pump cycle introduced previously, supplemented by an additional transition to an inhibited state of the ion pump.


Assuntos
ATPases Transportadoras de Cálcio/metabolismo , Prótons , Retículo Sarcoplasmático/enzimologia , Animais , Sítios de Ligação , ATPases Transportadoras de Cálcio/química , Cinética , Ligação Proteica , Conformação Proteica , Coelhos , Temperatura
19.
Gen Physiol Biophys ; 30(2): 145-53, 2011 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-21613669

RESUMO

Ultrasound velocimetry and densitometry methods were used to study the interactions of the Na,K-ATPase with the lipid bilayer in large unilamellar liposomes composed of dioleoyl phosphatidylcholine (DOPC). The ultrasound velocity increased and the specific volume of the phospholipids decreased with increasing concentrations of protein. These experiments allowed us to determine the reduced specific apparent compressibility of the lipid bilayer, which decreased by approx. 11% with increasing concentrations of the Na,K-ATPase up to an ATPase/DOPC molar ratio = 2 × 10⁻4. Assuming that ATPase induces rigidization of the surrounding lipid molecules one can obtain from the compressibility data that 3.7 to 100 times more lipid molecules are affected by the protein in comparison with annular lipids. However, this is in contradiction with the current theories of the phase transitions in lipid bilayers. It is suggested that another physical mechanisms should be involved for explanation of observed effect.


Assuntos
Bicamadas Lipídicas/química , Lipossomos/química , Fosfatidilcolinas/química , Proteolipídeos/química , ATPase Trocadora de Sódio-Potássio/química , Adenosina Trifosfatases/química , Animais , Membrana Celular/metabolismo , Densitometria/métodos , Halobacterium/enzimologia , Lipídeos/química , Modelos Químicos , Coelhos , Temperatura , Ultrassom , Água/química
20.
Biochemistry ; 50(18): 3736-48, 2011 May 10.
Artigo em Inglês | MEDLINE | ID: mdl-21449573

RESUMO

The human α(1)/His(10)-ß(1) isoform of the Na,K-ATPase has been expressed in Pichia pastoris, solubilized in n-dodecyl-ß-maltoside, and purified by metal chelate chromatography. The α(1)ß(1) complex spontaneously associates in vitro with the detergent-solubilized purified human FXYD1 (phospholemman) expressed in Escherichia coli. It has been confirmed that FXYD1 spontaneously associates in vitro with the α(1)/His(10)-ß(1) complex and stabilizes it in an active mode. The functional properties of the α(1)/His(10)-ß(1) and α(1)/His(10)-ß(1)/FXYD1 complexes have been investigated by fluorescence methods. The electrochromic dye RH421 which monitors binding to and release of ions from the binding sites has been applied in equilibrium titration experiments to determine ion binding affinities and revealed that FXYD1 induces an ∼30% increase of the Na(+)-binding affinity in both the E(1) and P-E(2) conformations. By contrast, it does not affect the affinities for K(+) and Rb(+) ions. Phosphorylation induced partial reactions of the enzyme have been studied as backdoor phosphorylation by inorganic phosphate and in kinetic experiments with caged ATP in order to evaluate the ATP-binding affinity and the time constant of the conformational transition, Na(3)E(1)-P → P-E(2)Na(3). No significant differences with or without FXYD1 could be detected. Rate constants of the conformational transitions Rb(2)E(1) → E(2)(Rb(2)) and E(2)(Rb(2)) → Na(3)E(1), investigated with fluorescein-labeled Na,K-ATPase, showed only minor or no effects of FXYD1, respectively. The conclusion from all these experiments is that FXYD1 raises the binding affinity of α(1)ß(1) for Na ions, presumably at the third Na-selective binding site. In whole cell expression studies FXYD1 reduces the apparent affinity for Na ions. Possible reasons for the difference from this study using the purified recombinant Na,K-ATPase are discussed.


Assuntos
Regulação Enzimológica da Expressão Gênica , Proteínas de Membrana/fisiologia , Fosfoproteínas/fisiologia , ATPase Trocadora de Sódio-Potássio/química , Sódio/química , Trifosfato de Adenosina/química , Animais , Sítios de Ligação , Bovinos , Relação Dose-Resposta a Droga , Humanos , Íons , Cinética , Proteínas de Membrana/química , Fosfoproteínas/química , Pichia/metabolismo , Isoformas de Proteínas , Proteínas Recombinantes/química , Albumina Sérica/química , Espectrometria de Fluorescência/métodos
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...