Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Neuroscience ; 128(1): 7-14, 2004.
Artigo em Inglês | MEDLINE | ID: mdl-15450349

RESUMO

The bed nucleus of the stria terminalis (BNST) is believed to be a critical relay between the central nucleus of the amygdala (CE) and the paraventricular nucleus of the hypothalamus in the control of hypothalamic-pituitary-adrenal (HPA) responses elicited by conditioned fear stimuli. If correct, lesions of CE or BNST should block expression of HPA responses elicited by either a specific conditioned fear cue or a conditioned context. To test this, rats were subjected to cued (tone) or contextual classical fear conditioning. Two days later, electrolytic or sham lesions were placed in CE or BNST. After 5 days, the rats were tested for both behavioral (freezing) and neuroendocrine (corticosterone) responses to tone or contextual cues. CE lesions attenuated conditioned freezing and corticosterone responses to both tone and context. In contrast, BNST lesions attenuated these responses to contextual but not tone stimuli. These results suggest CE is indeed an essential output of the amygdala for the expression of conditioned fear responses, including HPA responses, regardless of the nature of the conditioned stimulus. However, because lesions of BNST only affected behavioral and endocrine responses to contextual stimuli, the results do not support the notion that BNST is critical for HPA responses elicited by conditioned fear stimuli in general. Instead, the BNST may be essential specifically for contextual conditioned fear responses, including both behavioral and HPA responses, by virtue of its connections with the hippocampus, a structure essential to contextual conditioning. The results are also not consistent with the hypothesis that BNST is only involved in unconditioned aspects of fear and anxiety.


Assuntos
Corticosterona/sangue , Medo/fisiologia , Vias Neurais/patologia , Núcleos Septais/patologia , Animais , Comportamento Animal/fisiologia , Condicionamento Clássico , Sistema Hipotálamo-Hipofisário/fisiologia , Masculino , Sistema Hipófise-Suprarrenal/fisiologia , Ratos , Ratos Sprague-Dawley
2.
Nat Neurosci ; 4(7): 724-31, 2001 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-11426229

RESUMO

Single-cell activity was recorded in the dorsal subnucleus of the lateral amygdala (LAd) of freely behaving rats during Pavlovian fear conditioning, to determine the relationship between neuronal activity and behavioral learning. Neuronal responses elicited by the conditioned stimulus typically increased before behavioral fear was evident, supporting the hypothesis that neural changes in LAd account for the conditioning of behavior. Furthermore, two types of these rapidly modified cells were found. Some, located in the dorsal tip of LAd, exhibited short-latency responses (<20 ms) that were only transiently changed. A second class of cells, most commonly found in ventral regions of LAd, had longer latency responses, but maintained enhanced responding throughout training and even through extinction. These anatomically distinct cells in LAd may be differentially involved in the initiation of learning and long-term memory storage.


Assuntos
Tonsila do Cerebelo/fisiologia , Memória/fisiologia , Tonsila do Cerebelo/citologia , Animais , Condicionamento Clássico/fisiologia , Medo/fisiologia , Masculino , Plasticidade Neuronal , Ratos , Ratos Sprague-Dawley
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA