Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 80
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Arch Toxicol ; 98(7): 2199-2211, 2024 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-38658404

RESUMO

As part of the safety assessment of salicylate esters in cosmetics, we developed a metabolism factor based on in vitro to in vivo extrapolation (IVIVE) to provide a better estimation of the aggregate internal exposure to the common metabolite, salicylic acid. Optimal incubation conditions using human liver S9 were identified before measuring salicylic acid formation from 31 substances. Four control substances, not defined as salicylic esters but which could be mistaken as such due to their nomenclature, did not form salicylic acid. For the remaining substances, higher in vitro intrinsic clearance (CLint, in vitro) values generally correlated with lower LogP values. A "High-Throughput Pharmacokinetic" (HTPK) model was used to extrapolate CLint, in vitro values to human in vivo clearance and half-lives. The latter were used to calculate the percentage of substance metabolised to salicylic acid in 24 h in vivo following human exposure to the ester, i.e. the "metabolism factor". The IVIVE model correctly reproduced the observed elimination rate of 3 substances using in silico or in vitro input parameters. For other substances, in silico only-based predictions generally resulted in lower metabolism factors than when in vitro values for plasma binding and liver S9 CLint, in vitro were used. Therefore, in vitro data input provides the more conservative metabolism factors compared to those derived using on in silico input. In conclusion, these results indicate that not all substances contribute equally (or at all) to the systemic exposure to salicylic acid. Therefore, we propose a realistic metabolism correction factor by which the potential contribution of salicylate esters to the aggregate consumer exposure to salicylic acid from cosmetic use can be estimated.


Assuntos
Ésteres , Ácido Salicílico , Humanos , Ácido Salicílico/farmacocinética , Ácido Salicílico/metabolismo , Cosméticos , Modelos Biológicos , Administração Cutânea , Fígado/metabolismo , Fígado/efeitos dos fármacos , Meia-Vida , Pele/metabolismo , Pele/efeitos dos fármacos , Simulação por Computador , Absorção Cutânea
2.
Regul Toxicol Pharmacol ; 149: 105597, 2024 May.
Artigo em Inglês | MEDLINE | ID: mdl-38460723

RESUMO

Development of New Approach Methodologies (NAMs) capable of providing a No Expected Sensitization Induction Level (NESIL) value remains a high priority for the fragrance industry for conducting a Quantitative Risk Assesment (QRA) to evaluate dermal sensitization. The in vitro GARDskin assay was recently adopted by the OECD (TG 442E) for the hazard identification of skin sensitizers. Continuous potency predictions are derived using a modified protocol that incorporates dose-response measurements. Linear regression models have been developed to predict human NESIL values. The aim of the study was to evaluate the precision and reproducibility of the continuous potency predictions from the GARDskin Dose-Response (DR) assay and its application in conducting QRA for fragrance materials using a Next Generation Risk Assessment (NGRA) framework. Results indicated that the GARDskin Dose-Response model predicted human NESIL values with a good degree of concordance with published NESIL values, which were also reproducible in 3 separate experiments. Using Isocyclocitral as an example, a QRA was conducted to determine its safe use levels in different consumer product types using a NGRA framework. This study represents a major step towards the establishment of the assay to derive NESIL values for conducting QRA evaluations for fragrance materials using a NGRA framework.


Assuntos
Relação Dose-Resposta a Droga , Perfumes , Medição de Risco/métodos , Humanos , Perfumes/toxicidade , Reprodutibilidade dos Testes , Dermatite Alérgica de Contato/etiologia , Animais , Bioensaio/métodos
3.
Regul Toxicol Pharmacol ; 148: 105569, 2024 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-38286303

RESUMO

The Research Institute for Fragrance Materials (RIFM) and Creme Global Cremeglobal.com partnered to develop an aggregate exposure model for fragrance ingredients. The model provides a realistic estimate of the total exposure of fragrance ingredients to individuals across a population. The Threshold of Toxicological Concern (TTC) and Dermal Sensitization Threshold (DST) were used to demonstrate the magnitude of low exposure to fragrance materials. The total chronic systemic, inhalation, and dermal 95th percentile exposures on approximately 3000 fragrance ingredients in RIFM's inventory were compared to their respective TTC or DST. Additionally, representative fragrance ingredients were randomly selected and analyzed for exposure distribution by product type (i.e., cosmetic/personal care, household care, oral care, and air care) and route of exposure. It was found that 76 % of fragrance ingredients fall below their respective TTC limits when compared to 95th percentile systemic exposure, while 99 % are below inhalation TTC limits. The lowest 95th percentile aggregate exposure by product type was from household care products, then air care, and oral care products. The highest exposure was from personal care/cosmetic products. The volume of use for most fragrance ingredients (63 %) was <1 metric ton, estimating that environmental exposure to fragrance ingredients is likely low.


Assuntos
Cosméticos , Perfumes , Humanos , Odorantes , Qualidade de Produtos para o Consumidor , Cosméticos/toxicidade , Produtos Domésticos/toxicidade , Medição de Risco
4.
Environ Mol Mutagen ; 64(4): 234-243, 2023 04.
Artigo em Inglês | MEDLINE | ID: mdl-36762970

RESUMO

To determine the utility of the ToxTracker assay in animal alternative testing strategies, the genotoxic potential of four fragrance materials (2-octen-4-one, lauric aldehyde, veratraldehyde, and p-methoxy cinnamaldehyde) were tested in the ToxTracker assay. These materials have been previously evaluated in an in vitro as well as in vivo micronucleus assay, conducted as per OECD guidelines. In addition to these studies, reconstructed human skin micronucleus studies were conducted on all four materials. All four materials were positive in an in vitro micronucleus assay but were negative in both in vivo and 3D skin micronucleus assays. The ToxTracker assay, in combination with in silico methods to predict metabolism was used to identify mechanisms for the misleading positive outcomes observed in the in vitro micronucleus assays. The results show that the ToxTracker assay, in conjunction with in silico predictions, can provide the information needed to aid in the identification of an appropriate animal alternative follow-up assay, for substances with positive results in the standard in vitro test battery. Thus, the ToxTracker assay is a valuable tool to identify the genotoxic potential of fragrance materials and can aid with replacing animal-based follow-up testing with appropriate animal alternative assay(s).


Assuntos
Dano ao DNA , Odorantes , Animais , Humanos , Testes para Micronúcleos/métodos , Pele , Testes de Mutagenicidade/métodos
5.
Chem Res Toxicol ; 35(12): 2324-2334, 2022 12 19.
Artigo em Inglês | MEDLINE | ID: mdl-36458907

RESUMO

Integrating computational chemistry and toxicology can improve the read-across analog approach to fill data gaps in chemical safety assessment. In read-across, structure-related parameters are compared between a target chemical with insufficient test data and one or more materials with sufficient data. Recent advances have focused on enhancing the grouping or clustering of chemicals to facilitate toxicity prediction via read-across. Analog selection ascertains relevant features, such as physical-chemical properties, toxicokinetic-related properties (bioavailability, metabolism, and degradation pathways), and toxicodynamic properties of chemicals with an emphasis on mechanisms or modes of action. However, each human health end point (genotoxicity, skin sensitization, phototoxicity, repeated dose toxicity, reproductive toxicity, and local respiratory toxicity) provides a different critical context for analog selection. Here six end point-specific, rule-based schemes are described. Each scheme creates an end point-specific workflow for filling the target material data gap by read-across. These schemes are intended to create a transparent rationale that supports the selected read-across analog(s) for the specific end point under study. This framework can systematically drive the selection of read-across analogs for each end point, thereby accelerating the safety assessment process.


Assuntos
Perfumes , Humanos , Perfumes/química , Testes de Toxicidade , Medição de Risco , Dano ao DNA
6.
Regul Toxicol Pharmacol ; 136: 105280, 2022 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-36367523

RESUMO

Chemical grouping and read-across are frequently used non-animal alternatives for filling toxicological data gaps. When grouping chemicals, it is critical to define the applicability domain because minor differences in chemical structure can lead to significant differences in toxicity. Here, we present a case study on isoeugenol and methyl eugenol, which are scheduled for review by IARC in June 2023, to illustrate that structural similarity alone may not be sufficient to group chemicals for hazard classification. Isoeugenol and methyl eugenol are plant-derived phenylpropenes that share similar physicochemical properties. The major metabolic pathway for isoeugenol includes conjugation of the phenolic hydroxyl group with sulfate and glucuronic acid as an efficient detoxification process, whereas the major metabolic pathway for methyl eugenol involves benzylic hydroxylation and formation of the 1'-sulfoxymethyleugenol which leads to carbocation formation. The carbocation can form DNA adducts and induce genotoxicity and carcinogenicity. Consistently, genotoxicity and carcinogenicity alerts are identified from in silico prediction tools for methyl eugenol but not isoeugenol. Moreover, the available toxicogenomic, genotoxicity, and carcinogenicity studies confirm that these chemicals have significantly different bioactivities. Data on other structurally similar chemicals further supports our conclusion that it is not appropriate to group these two chemicals for cancer hazard classification.


Assuntos
Eugenol , Neoplasias , Humanos , Eugenol/toxicidade , Adutos de DNA
7.
Regul Toxicol Pharmacol ; 133: 105200, 2022 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-35662638

RESUMO

The Dermal Sensitisation Thresholds (DST) are Thresholds of Toxicological Concern, which can be used to justify exposure-based waiving when conducting a skin sensitisation risk assessment. This study aimed to update the published DST values by expanding the size of the Local Lymph Node Assay dataset upon which they are based, whilst assigning chemical reactivity using an in silico expert system (Derek Nexus). The potency values within the expanded dataset fitted a similar gamma distribution to that observed for the original dataset. Derek Nexus was used to classify the sensitisation activity of the 1152 chemicals in the expanded dataset and to predict which chemicals belonged to a High Potency Category (HPC). This two-step classification led to three updated thresholds: a non-reactive DST of 710 µg/cm2 (based on 79 sensitisers), a reactive (non-HPC) DST of 73 µg/cm2 (based on 331 sensitisers) and an HPC DST of 1.0 µg/cm2 (based on 146 sensitisers). Despite the dataset containing twice as many sensitisers, these values are similar to the previously published thresholds, highlighting their robustness and increasing confidence in their use. By classifying reactivity in silico the updated DSTs can be applied within a skin sensitisation risk assessment in a reproducible, scalable and accessible manner.


Assuntos
Dermatite Alérgica de Contato , Testes Cutâneos/normas , Simulação por Computador , Dermatite Alérgica de Contato/etiologia , Sistemas Inteligentes , Humanos , Ensaio Local de Linfonodo , Medição de Risco , Pele
8.
Regul Toxicol Pharmacol ; 131: 105169, 2022 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-35447229

RESUMO

The assessment of skin sensitisation is a key requirement in all regulated sectors, with the European Union's regulation of cosmetic ingredients being most challenging, since it requires quantitative skin sensitisation assessment based on new approach methodologies (NAMs). To address this challenge, an in-depth and harmonised understanding of NAMs is fundamental to inform the assessment. Therefore, we compiled a database of NAMs, and in vivo (human and local lymph node assay) reference data. Here, we expanded this database with 41 substances highly relevant for cosmetic industry. These structurally different substances were tested in six NAMs (Direct Peptide Reactivity Assay, KeratinoSens™, human Cell Line Activation Test, U-SENS™, SENS-IS, Peroxidase Peptide Reactivity Assay). Our analysis revealed that the substances could be tested without technical limitations, but were generally overpredicted when compared to reference results. Reasons for this reduced predictivity were explored through pairwise NAM comparisons and association of overprediction with hydrophobicity. We conclude that more detailed understanding of how NAMs apply to a wider range of substances is needed. This would support a flexible and informed choice of NAMs to be optimally applied in the context of a next generation risk assessment framework, ultimately contributing to the characterisation and reduction of uncertainty.


Assuntos
Cosméticos , Dermatite Alérgica de Contato , Alternativas aos Testes com Animais/métodos , Animais , Cosméticos/toxicidade , Bases de Dados Factuais , Dermatite Alérgica de Contato/etiologia , Humanos , Ensaio Local de Linfonodo , Pele
9.
Crit Rev Toxicol ; 52(1): 51-65, 2022 01.
Artigo em Inglês | MEDLINE | ID: mdl-35416118

RESUMO

Skin sensitization resulting in allergic contact dermatitis represents an important toxicological endpoint as part of safety assessments. When available substance-specific sensitization data are inadequate, the dermal sensitization threshold (DST) concept has been proposed to set a skin exposure threshold to provide no appreciable risk of skin sensitization. Structure-based DSTs, which include non-reactive, reactive, and high potency category (HPC) DSTs, can be applied to substances with an identified chemical structures. An in vitro data-based "mixture DST" can be applied to mixtures based on data from in vitro test methods, such as KeratinoSens™ and the human Cell Line Activation Test. The purpose of this review article is to discuss the practical use of DSTs for conducting sound sensitization risk assessments to assure the safety of consumer products. To this end, several improvements are discussed in this review. For application of structure-based DSTs, an overall structural classification workflow was developed to exclude the possibility that "HPC but non-reactive" chemicals are misclassified as "non-reactive", because such chemicals should be classified as HPC chemicals considering that HPC rules have been based on the chemical structure of high potency sensitizers. Besides that, an extended application of the mixture DST principle to mixtures that either is cytotoxic or evaluated as positive was proposed. On a final note, we also developed workflows that integrate structure-based and in vitro-based mixture DST. The proposed workflows enable the application of the appropriate DST, which serves as a point of departure in the quantitative sensitization risk assessment.


Assuntos
Dermatite Alérgica de Contato , Linhagem Celular , Dermatite Alérgica de Contato/etiologia , Humanos , Técnicas In Vitro , Medição de Risco/métodos , Pele
10.
Mutagenesis ; 37(1): 13-23, 2022 04 02.
Artigo em Inglês | MEDLINE | ID: mdl-35302169

RESUMO

BlueScreen HC is a mammalian cell-based assay for measuring the genotoxicity and cytotoxicity of chemical compounds and mixtures. The BlueScreen HC assay has been utilized at the Research Institute for Fragrance Materials in a safety assessment program as a screening tool to prioritize fragrance materials for higher-tier testing, as supporting evidence when using a read-across approach, and as evidence to adjust the threshold of toxicological concern. Predictive values for the BlueScreen HC assay were evaluated based on the ability of the assay to predict the outcome of in vitro and in vivo mutagenicity and chromosomal damage genotoxicity assays. A set of 371 fragrance materials was assessed in the BlueScreen HC assay along with existing or newly generated in vitro and in vivo genotoxicity data. Based on a weight-of-evidence approach, the majority of materials in the data set were deemed negative and concluded not to have the potential to be genotoxic, while only a small proportion of materials were determined to show genotoxic effects in these assays. Analysis of the data set showed a combination of high positive agreement but low negative agreement between BlueScreen HC results, in vitro regulatory genotoxicity assays, and higher-tier test results. The BlueScreen HC assay did not generate any false negatives, thereby providing robustness when utilizing it as a high-throughput screening tool to evaluate the large inventory of fragrance materials. From the perspective of protecting public health, it is desirable to have no or minimal false negatives, as a false-negative result may incorrectly indicate the lack of a genotoxicity hazard. However, the assay did have a high percentage of false-positive results, resulting in poor positive predictivity of the in vitro genotoxicity test battery outcome. Overall, the assay generated 100% negative predictivity and 3.9% positive predictivity. In addition to the data set of 371 fragrance materials, 30 natural complex substances were evaluated for BlueScreen HC, Ames, and in vitro micronucleus assay, and a good correlation in all three assays was observed. Overall, while a positive result may have to be further investigated, these findings suggest that the BlueScreen HC assay can be a valuable screening tool to detect the genotoxic potential of fragrance materials and mixtures.


Assuntos
Dano ao DNA , Odorantes , Animais , Bioensaio/métodos , Mamíferos , Testes de Mutagenicidade/métodos , Mutagênicos/toxicidade
11.
Regul Toxicol Pharmacol ; 130: 105128, 2022 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-35104615

RESUMO

Potency determination of potential skin sensitizers in humans is essential for quantitative risk assessment and proper risk management. SENS-IS is an in vitro test based on a reconstructed human skin model, that was developed to predict the hazard and potency of potential skin sensitizers. The performance of the SENS-IS assay in potency prediction for 174 materials was evaluated for this work. The potency used as a benchmark was determined based on the weight of evidence approach, by collectively considering all well-established test data, including human, animal, in chemico, in vitro, and in silico data. Based on this weight of evidence approach, the dataset was composed of 5, 19, 34, 54, and 38 extreme, strong, moderate, weak, and very weak sensitizers, respectively, as well as 24 non-sensitizers. SENS-IS provided good prediction of the skin sensitization potency for 85% of this dataset, with precise and approximate prediction on 46% and 39% of the 174 materials, respectively. Our evaluation showed that SENS-IS provides a good approximation of the skin sensitization potency.


Assuntos
Dermatite Alérgica de Contato/patologia , Irritantes/toxicidade , Modelos Biológicos , Alternativas aos Testes com Animais , Animais , Relação Dose-Resposta a Droga , Humanos , Técnicas In Vitro , Reprodutibilidade dos Testes , Testes de Toxicidade
12.
Dermatitis ; 33(2): 161-175, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-35170517

RESUMO

BACKGROUND: Reliable human potency data are necessary for conducting quantitative risk assessments, as well as development and validation of new nonanimal methods for skin sensitization assessments. Previously, human skin sensitization potency of fragrance materials was derived primarily from human data or the local lymph node assay. OBJECTIVES: This study aimed to define skin sensitization potency of fragrance materials via weight of evidence approach, incorporating all available human, animal, in vitro, in chemico, and in silico data. METHODS: All available data on 106 fragrance materials were considered to assign each material into 1 of the 6 defined potency categories (extreme, strong, moderate, weak, very weak, and nonsensitizer). RESULTS: None of the 106 materials were considered an extreme sensitizer, whereas a total of 6, 23, 41, and 26 materials were categorized as strong, moderate, weak, and very weak sensitizers, respectively. Ten materials lacked evidence for the induction of skin sensitization. CONCLUSIONS: Skin sensitization potency categorization of the 106 fragrance materials based on the described weight of evidence approach can serve as a useful resource in evaluation of nonanimal methods, as well as in risk assessment.


Assuntos
Dermatite Alérgica de Contato , Perfumes , Animais , Dermatite Alérgica de Contato/etiologia , Humanos , Ensaio Local de Linfonodo , Odorantes , Perfumes/efeitos adversos , Pele
13.
Mutagenesis ; 37(2): 89-111, 2022 05 04.
Artigo em Inglês | MEDLINE | ID: mdl-34850913

RESUMO

In order to evaluate the utility of the 3D reconstructed skin micronucleus assay (3DRSMN) to assess clastogenic/aneugenic potential of the fragrance chemicals, a set of 22 fragrance materials were evaluated in 3DRSMN assay. These materials evaluated were also evaluated in an in vitro as well as in vivo micronucleus assay, conducted as per Organisation for Economic Co-operation and Development guidelines. The results of the RSMN assay were in 100% agreement with the in vivo micronucleus assay results. From this dataset, 18 materials were positive in an in vitro micronucleus assay but were negative in an in vivo micronucleus assay. All these 18 materials were also concluded to be negative in 3DRSMN assay, stressing the importance of the assay to help minimize misleading positive outcomes from the in vitro assay. Since the highest exposure for fragrances is through the dermal route, the RSMN assay fits the applicability domain for testing. Thus, RSMN assay is an important alternative to animal testing for characterization of the genotoxicity potential of fragrance materials.


Assuntos
Odorantes , Pele , Animais , Dano ao DNA , Testes para Micronúcleos/métodos , Mutagênicos/toxicidade
14.
Food Chem Toxicol ; 159: 112705, 2022 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-34838676

RESUMO

Some fragrance ingredients may have the potential to induce skin sensitization in humans but can still be safely formulated into consumer products. Quantitative Risk Assessment (QRA) for dermal sensitization is required to determine safe levels at which potential skin sensitizers can be incorporated into consumer products. The no expected sensitization induction level or NESIL is the point of departure for the dermal QRA. Sensitization assessment factors are applied to the NESIL to determine acceptable exposure levels at which no skin sensitization induction would be expected in the general population. This paper details the key steps involved in deriving a weight of evidence (WoE) NESIL for a given fragrance ingredient using all existing data, including in vivo, in vitro, and in silico. Read-across can be used to derive a NESIL for a group of structurally similar materials when data are insufficient. When sufficient target and read-across data are lacking, exposure waiving threshold (the DST) may be used. We outline the process as it currently stands at the Research Institute for Fragrance Materials Inc. (RIFM) and provide examples, but it is dynamic and is bound to change with evolving science as new approach methodologies (NAMs) are actively incorporated.


Assuntos
Dermatite Alérgica de Contato/etiologia , Perfumes/toxicidade , Medição de Risco , Animais , Humanos , Odorantes , Projetos de Pesquisa , Medição de Risco/métodos , Medição de Risco/normas
15.
Food Chem Toxicol ; 159: 112659, 2022 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-34801651

RESUMO

Mintlactone (chemical name 3,6-dimethyl-5,6,7,7a-tetrahydro-1-benzofuran-2(4H)-one, CAS Number 13341-72-5) is a fragrance and flavor ingredient with reported uses in many different cosmetics, personal care, and household products. In order to evaluate the genotoxic potential of mintlactone, in vitro and in vivo genotoxicity tests were conducted. Results from bacterial mutagenicity tests varied across different batches of differing purity with positive results observed in TA98 only. An in vivo comet assay was also considered to be positive in livers of female mice but negative in male mice. In contrast, in vitro and in vivo micronucleus tests, as well as 3D skin comet/micronucleus tests, were negative, indicating no chromosomal or DNA damage. The underlying causes for these contradictory results are not clear. It appears that the purity and/or stability of the test material may be an issue. In the absence of dependable scientific information on the purity and/or storage stability of mintlactone, its safety for use as a fragrance ingredient cannot be substantiated.


Assuntos
Dano ao DNA/efeitos dos fármacos , Lactonas/toxicidade , Mutagênicos/toxicidade , Terpenos/toxicidade , Animais , Ensaio Cometa , Feminino , Aromatizantes , Masculino , Camundongos , Testes para Micronúcleos , Testes de Mutagenicidade , Perfumes
16.
Toxicol In Vitro ; 79: 105298, 2022 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-34902536

RESUMO

The U-SENS™ assay was developed to address the third key event of the skin sensitization adverse outcome pathway (AOP) and is described in OECD test guideline 442E, Annex II. A dataset of 68 fragrance ingredients comprised of 7 non-sensitizers and 61 sensitizers was tested in the U-SENS™ assay. The potential for fragrance ingredients to activate dendritic cells, measured by U-SENS™, was compared to the sensitization potential determined by weight of evidence (WoE) from historical data. Of the non-sensitizers, 4 induced CD86 cell surface marker ≥1.5-fold while 3 did not. Of the sensitizers, 50 were predicted to be positive in U-SENS™, while the remaining 11 were negative. Positive and negative predictive values (PPV and NPV) of U-SENS™ were 93% and 21%, respectively. No specific chemical property evaluated could account for misclassified ingredients. Assessment of parent and metabolite protein binding alerts in silico suggests that parent chemical metabolism may play a role in CD86 activation in U-SENS™. Combining the U-SENS™ assay in a "2 out of 3" defined approach with the direct peptide reactivity assay (DPRA) and KeratinoSens™ predicted sensitization hazard with PPV and NPV of 97% and 24%, respectively. Combining complementary in silico and in vitro methods to the U-SENS™ assay should be integrated to define the hazard classification of fragrance ingredients, since a single NAM cannot replace animal-based methods.


Assuntos
Perfumes/toxicidade , Valor Preditivo dos Testes , Testes de Toxicidade/métodos , Alérgenos , Alternativas aos Testes com Animais , Humanos , Células U937
17.
Regul Toxicol Pharmacol ; 129: 105098, 2022 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-34953932

RESUMO

The safety assessment of fragrance materials for photoirritation utilized by The Research Institute for Fragrance Materials has recently been modified and is described in detail. Materials demonstrating significant absorbance in the ultraviolet and visible light (UV/VIS) range (290-700 nm) may present a concern for photoirritation and require further investigation. If there are no photoirritation data or data are insufficient, then data on read-across materials are considered before a tiered approach for testing begins. The hazard-based 3T3-Neutral Red Uptake (NRU) Phototoxicity Test (OECD TG 432) is used as a first-tier assay; if it predicts photoirritation, it is followed by the reconstructed human epidermis (RhE) phototoxicity assay (OECD TG 498). The RhE phototoxicity assay is used to determine a No Observed Effect Level (NOEL) for photoirritation that is used in a confirmatory human photoirritation test. Data are presented on 108 fragrance materials exhibiting significant UV/VIS absorbance and evaluated in the 3T3-NRU Phototoxicity Assay. Twenty-one materials were predicted to be phototoxic; twenty were evaluated in the RhE Phototoxicity Assay to establish a NOEL. Fourteen materials were then evaluated in a confirmatory human phototoxicity test. The tiered testing approach presented represents a scientifically pragmatic method to minimize the likelihood of photoirritation from fragrance materials.


Assuntos
Dermatite Fototóxica/patologia , Epiderme/efeitos dos fármacos , Perfumes/efeitos adversos , Perfumes/química , Testes de Toxicidade/métodos , Relação Dose-Resposta a Droga , Humanos , Nível de Efeito Adverso não Observado
18.
Curr Res Toxicol ; 2: 192-201, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-34345860

RESUMO

In a 90-day GLP-compliant study groups of Sprague-Dawley rats (10/sex/group) were fed diets containing ß-ionone epoxide, a fragrance material and a flavoring substance, at dietary concentrations providing target intakes of 0, 20, 40 and 80 mg/kg bw/day. There were no deaths and no adverse changes in clinical observations, ophthalmological examinations, body weight, body weight gain, food consumption, food efficiency; hematology, serum chemistry, urinalysis parameters; or in macroscopic findings attributable to ß-ionone epoxide administration. Increased absolute and relative liver weights in high dose females without correlating hepatic histopathological findings were considered non-adverse. Cortical vacuolation of adrenal zona fasciculata was observed in high-dose males but was considered non-adverse due to the nondegenerative nature of this alteration. ß-Ionone epoxide did not influence estrus cyclicity in females and did not affect sperm morphology or epididymal sperm count, homogenization-resistant spermatid count and motility measurements in male rats. The no-observed-adverse-effect level (NOAEL) for administration of ß-ionone epoxide in the diet was determined to be the highest dose tested of 80 mg/kg bw/day.

19.
Dermatitis ; 32(5): 339-352, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-33093296

RESUMO

BACKGROUND: The human repeated insult patch test (HRIPT) has a history of use in the fragrance industry as a component of safety evaluation, exclusively to confirm the absence of skin sensitization at a defined dose. OBJECTIVE: The aim of the study was to document the accumulated experience from more than 30 years of conducting HRIPTs. METHODS: A retrospective collation of HRIPT studies carried out to a consistent protocol was undertaken, with each study comprising a minimum of 100 volunteers. CONCLUSIONS: The HRIPT outcomes from 154 studies on 134 substances using 16,512 volunteers were obtained. Most studies confirmed that at the selected induction/challenge dose, sensitization was not induced. In 0.12% of subjects (n = 20), there was induction of allergy. However, in the last 11 years, only 3 (0.03%) of 9854 subjects became sensitized, perhaps because of improved definition of a safe HRIPT dose from the local lymph node assay and other skin sensitization methodologies, as well as more rigorous application of the standard protocol after publication in 2008. This experience with HRIPTs demonstrates that de novo sensitization induction is rare and becoming rarer, but it plays an important role as an indicator that toxicological predictions from nonhuman test methods (in vivo and in vitro methods) can be imperfect.


Assuntos
Alérgenos/análise , Dermatite Alérgica de Contato/epidemiologia , Experimentação Humana , Testes do Emplastro/efeitos adversos , Perfumes/efeitos adversos , Perfumes/química , Alérgenos/efeitos adversos , Dermatite Alérgica de Contato/diagnóstico , Humanos , Odorantes , Estudos Retrospectivos , Fatores de Tempo
20.
Crit Rev Toxicol ; 51(10): 792-804, 2021 11.
Artigo em Inglês | MEDLINE | ID: mdl-35142253

RESUMO

The induction of immunological responses that trigger bio-physiological symptoms in the respiratory tract following repeated exposure to a substance, is known as respiratory sensitization. The inducing compound is known as a respiratory sensitizer. While respiratory sensitization by high molecular weight (HMW) materials is recognized and extensively studied, much less information is available regarding low molecular weight (LMW) materials as respiratory sensitizers. Variability of symptoms presented in humans from such exposures, limited availability of (and access to) documented reports, and the absence of standardized and validated test models, hinders the identification of true respiratory sensitizers. This review aims to sort suspected LMW respiratory sensitizers based on available compelling, reasonable, inadequate, or questionable evidence in humans from occupational exposures and use this information to compose a reference list of reported chemical respiratory sensitizers for scientific research purposes. A list of 97 reported respiratory sensitizers was generated from six sources, and 52 LMW organic chemicals were identified, reviewed, and assigned to the four evidence categories. Less than 10 chemicals were confirmed with compelling evidence for induction of respiratory sensitization in humans from occupational exposures. Here, we propose the reference list for developing novel research on respiratory sensitization.


Assuntos
Exposição Ocupacional , Sistema Respiratório , Alérgenos/toxicidade , Humanos , Peso Molecular
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...